OpenCV2学习笔记之视频流读取与处理

目录
  • 前言
  • 一. 读取视频序列
  • 二. 处理视频帧
  • OpenCV:打开摄像头获取视频流
  • 总结

前言

由于项目需要,计划实现九路视频拼接,因此必须熟悉OpenCV对视频序列的处理。视频信号处理是图像处理的一个延伸,所谓的视频序列是由按一定顺序进行排放的图像组成,即帧(Frame)。在这里,主要记录下如何使用Qt+OpenCV读取视频中的每一帧,之后,在这基础上将一些图像处理的算法运用到每一帧上(如使用Canny算子检测视频中的边缘)。

一. 读取视频序列

OpenCV提供了一个简便易用的框架以提取视频文件和USB摄像头中的图像帧,如果只是单单想读取某个视频,你只需要创建一个cv::VideoCapture实例,然后在循环中提取每一帧。新建一个Qt控制台项目,直接在main函数添加:

#include <QCoreApplication>
#include <opencv2/core/core.hpp>
#include <opencv2/imgproc/imgproc.hpp>
#include <opencv2/highgui/highgui.hpp>
#include <QDebug>

int main(int argc, char *argv[])
{
    QCoreApplication a(argc, argv);

    // 读取视频流
    cv::VideoCapture capture("e:/BrokeGirls.mkv");
    // 检测视频是否读取成功
    if (!capture.isOpened())
    {
        qDebug() << "No Input Image";
        return 1;
    }

    // 获取图像帧率
    double rate= capture.get(CV_CAP_PROP_FPS);
    bool stop(false);
    cv::Mat frame; // 当前视频帧
    cv::namedWindow("Extracted Frame");

    // 每一帧之间的延迟
    int delay= 1000/rate;

    // 遍历每一帧
    while (!stop)
    {
        // 尝试读取下一帧
        if (!capture.read(frame))
            break;
        cv::imshow("Extracted Frame",frame);
        // 引入延迟
        if (cv::waitKey(delay)>=0)
                stop= true;
    }
        return a.exec();
}

(注意:要正确打开视频文件,计算机中必须安装有对应的解码器,否则cv::VideoCapture无法理解视频格式!)运行后,将出现一个窗口,播放选定的视频(需要在创建cv::VideoCapture对象时指定视频的文件名)。

二. 处理视频帧

为了对视频的每一帧进行处理,这里创建自己的类VideoProcessor,其中封装了OpenCV的视频获取框架,该类允许我们指定每帧调用的处理函数。

首先,我们希望指定一个回调处理函数,每一帧中都将调用它。该函数接受一个cv::Mat对象,并输出处理后的cv::Mat对象,其函数签名如下:

void processFrame(cv::Mat& img, cv::Mat& out);

作为这样一个处理函数的例子,以下的Canny函数计算图像的边缘,使用时直接添加在mian文件中即可:

    // 对视频的每帧做Canny算子边缘检测
void canny(cv::Mat& img, cv::Mat& out)
{
    // 先要把每帧图像转化为灰度图
    cv::cvtColor(img,out,CV_BGR2GRAY);
    // 调用Canny函数
    cv::Canny(out,out,100,200);
    // 对像素进行翻转
    cv::threshold(out,out,128,255,cv::THRESH_BINARY_INV);
}

现在我们需要创建一个VideoProcessor类,用来部署视频处理模块。而在此之前,需要先另外创建一个类,即VideoProcessor内部使用的帧处理类。这是因为在面向对象的上下文中,更适合使用帧处理类而不是一个帧处理函数,而使用类可以给程序员在涉及算法方面有更多的灵活度(书上介绍的)。将这个内部帧处理类命名为FrameProcessor,其定义如下:

#ifndef FRAMEPROCESSOR_H
#define FRAMEPROCESSOR_H
#include <opencv2/core/core.hpp>
#include <opencv2/highgui/highgui.hpp>

class FrameProcessor
{
public:
    virtual void process(cv:: Mat &input, cv:: Mat &output)= 0;
};

#endif // FRAMEPROCESSOR_H

现在可以开始定义VideoProcessor类了,以下为videoprocessor.h中的内容:

#ifndef VIDEOPROCESSOR_H
#define VIDEOPROCESSOR_H
#include <opencv2/core/core.hpp>
#include <opencv2/imgproc/imgproc.hpp>
#include <opencv2/highgui/highgui.hpp>
#include <QDebug>
#include "frameprocessor.h"

class VideoProcessor
{
  private:
      // 创建视频捕获对象
      cv::VideoCapture capture;
      // 每帧调用的回调函数
      void (*process)(cv::Mat&, cv::Mat&);
      // FrameProcessor接口
      FrameProcessor *frameProcessor;
      // 确定是否调用回调函数的bool信号
      bool callIt;
      // 输入窗口的名称
      std::string windowNameInput;
      // 输出窗口的名称
      std::string windowNameOutput;
      // 延迟
      int delay;
      // 已处理的帧数
      long fnumber;
      // 在该帧停止
      long frameToStop;
      // 是否停止处理
      bool stop;

      // 当输入图像序列存储在不同文件中时,可使用以下设置
      // 把图像文件名的数组作为输入
      std::vector<std::string> images;
      // 图像向量的迭加器
      std::vector<std::string>::const_iterator itImg;

      // 得到下一帧
      // 可能来自:视频文件或摄像头
      bool readNextFrame(cv::Mat &frame)
      {
          if (images.size()==0)
              return capture.read(frame);
          else {

              if (itImg != images.end())
              {
                  frame= cv::imread(*itImg);
                  itImg++;
                  return frame.data != 0;
              }
          }
      }

public:

      // 默认设置 digits(0), frameToStop(-1),
      VideoProcessor() : callIt(false), delay(-1),
          fnumber(0), stop(false),
          process(0), frameProcessor(0) {}

      // 创建输入窗口
      void displayInput(std::string wt);
      // 创建输出窗口
      void displayOutput(std::string wn);
      // 不再显示处理后的帧
      void dontDisplay();

      // 以下三个函数设置输入的图像向量
      bool setInput(std::string filename);
      // 若输入为摄像头,设置ID
      bool setInput(int id);
      // 若输入为一组图像序列时,应用该函数
      bool setInput(const std::vector<std::string>& imgs);

      // 设置帧之间的延迟
      // 0意味着在每一帧都等待按键响应
      // 负数意味着没有延迟
      void setDelay(int d);

      // 返回图像的帧率
      double getFrameRate();

      // 需要调用回调函数
      void callProcess();

      // 不需要调用回调函数
      void dontCallProcess();

      // 设置FrameProcessor实例
      void setFrameProcessor(FrameProcessor* frameProcessorPtr);

      // 设置回调函数
      void setFrameProcessor(void (*frameProcessingCallback)(cv::Mat&, cv::Mat&));

      // 停止运行
      void stopIt();

      // 判断是否已经停止
      bool isStopped();

      // 是否开始了捕获设备?
      bool isOpened();

      // 返回下一帧的帧数
      long getFrameNumber();

      // 该函数获取并处理视频帧
      void run();

};

#endif // VIDEOPROCESSOR_H

然后,在videoprocessor.cpp中定义各个函数的功能:

#include "videoprocessor.h"

// 创建输入窗口
void VideoProcessor::displayInput(std::string wt)
{
    windowNameInput= wt;
    cv::namedWindow(windowNameInput);
}

// 创建输出窗口
void VideoProcessor::displayOutput(std::string wn)
{
    windowNameOutput= wn;
    cv::namedWindow(windowNameOutput);
}

// 不再显示处理后的帧
void VideoProcessor::dontDisplay()
{
    cv::destroyWindow(windowNameInput);
    cv::destroyWindow(windowNameOutput);
    windowNameInput.clear();
    windowNameOutput.clear();
}

// 设置输入的图像向量
bool VideoProcessor::setInput(std::string filename)
{
  fnumber= 0;
  // 释放之前打开过的视频资源
  capture.release();
  images.clear();

  // 打开视频
  return capture.open(filename);
}

// 若输入为摄像头,设置ID
bool VideoProcessor::setInput(int id)
{
  fnumber= 0;
  // 释放之前打开过的视频资源
  capture.release();
  images.clear();

  // 打开视频文件
  return capture.open(id);
}

// 若输入为一组图像序列时,应用该函数
bool VideoProcessor::setInput(const std::vector<std::string>& imgs)
{
  fnumber= 0;
  // 释放之前打开过的视频资源
  capture.release();

  // 输入将是该图像的向量
  images= imgs;
  itImg= images.begin();

  return true;
}

// 设置帧之间的延迟
// 0意味着在每一帧都等待按键响应
// 负数意味着没有延迟
void VideoProcessor::setDelay(int d)
{
    delay= d;
}

// 返回图像的帧率
double VideoProcessor::getFrameRate()
{
    if (images.size()!=0) return 0;
    double r= capture.get(CV_CAP_PROP_FPS);
    return r;
}

// 需要调用回调函数
void VideoProcessor::callProcess()
{
    callIt= true;
}

// 不需要调用回调函数
void VideoProcessor::dontCallProcess()
{
    callIt= false;
}

// 设置FrameProcessor实例
void VideoProcessor::setFrameProcessor(FrameProcessor* frameProcessorPtr)
{
    // 使回调函数无效化
    process= 0;
    // 重新设置FrameProcessor实例
    frameProcessor= frameProcessorPtr;
    callProcess();
}

// 设置回调函数
void VideoProcessor::setFrameProcessor(void (*frameProcessingCallback)(cv::Mat&, cv::Mat&))
{
    // 使FrameProcessor实例无效化
    frameProcessor= 0;
    // 重新设置回调函数
    process= frameProcessingCallback;
    callProcess();
}

// 以下函数表示视频的读取状态
// 停止运行
void VideoProcessor::stopIt()
{
    stop= true;
}

// 判断是否已经停止
bool VideoProcessor::isStopped()
{
    return stop;
}

// 是否开始了捕获设备?
bool VideoProcessor::isOpened()
{
    return capture.isOpened() || !images.empty();
}

// 返回下一帧的帧数
long VideoProcessor::getFrameNumber()
{
  if (images.size()==0)
  {
      // 得到捕获设备的信息
      long f= static_cast<long>(capture.get(CV_CAP_PROP_POS_FRAMES));
      return f;

  }
  else // 当输入来自一组图像序列时的情况
  {
      return static_cast<long>(itImg-images.begin());
  }
}

// 该函数获取并处理视频帧
void VideoProcessor::run()
{
    // 当前帧
    cv::Mat frame;
    // 输出帧
    cv::Mat output;

    // 打开失败时
    if (!isOpened())
    {
        qDebug() << "Error!";
        return;
    }
    stop= false;
    while (!isStopped())
    {
        // 读取下一帧
        if (!readNextFrame(frame))
            break;
        // 显示输出帧
        if (windowNameInput.length()!=0)
            cv::imshow(windowNameInput,frame);
        // 调用处理函数
        if (callIt)
        {
          // 处理当前帧
          if (process)
              process(frame, output);
          else if (frameProcessor)
              frameProcessor->process(frame,output);
          // 增加帧数
          fnumber++;
        }
        else
        {
          output= frame;
        }
        // 显示输出帧
        if (windowNameOutput.length()!=0)
            cv::imshow(windowNameOutput,output);
        // 引入延迟
        if (delay>=0 && cv::waitKey(delay)>=0)
          stopIt();
        // 检查是否需要停止运行
        if (frameToStop>=0 && getFrameNumber()==frameToStop)
            stopIt();
    }
}

定义好视频处理类,它将与一个回调函数相关联。使用该类,可以创建一个实例,指定输入的视频文件,绑定回调函数,然后开始对每一帧进行处理,要调用这个视频处理类,只需在main函数中添加:

    // 定义一个视频处理类处理视频帧
    // 首先创建实例
    VideoProcessor processor;
    // 打开视频文件
    processor.setInput("e:/BrokeGirls.mkv");
    // 声明显示窗口
    // 分别为输入和输出视频
    processor.displayInput("Input Video");
    processor.displayOutput("Output Video");
    // 以原始帧率播放视频
    processor.setDelay(1000./processor.getFrameRate());
    // 设置处理回调函数
    processor.setFrameProcessor(canny);
    // 开始帧处理过程
    processor.run();
    cv::waitKey();

效果:

OpenCV:打开摄像头获取视频流

#include

#include

using namespace cv;

using namespace std;

int main()

{

//【1】从摄像头读入视频

    VideoCapture capture(1);

    if (!capture.isOpened())

{

cout<< "open camera fail ..." << endl;

        return -1;

    }

capture.set(CAP_PROP_FRAME_WIDTH, 640);

    capture.set(CAP_PROP_FRAME_HEIGHT, 480);

    char filename[200];

    int count =0;

    //【2】循环显示每一帧

    Mat frame;  //定义一个Mat变量,用于存储每一帧的图像

    char key;

    while (true)

{

//读入图像

        capture>> frame;  //读取当前帧

        key = waitKey(20);

        if(key ==27)//esc键退出

            break;

        if(key ==32)//空格键保存图像

        {

sprintf(filename, "Picture_%d.png", ++count);

            imwrite(filename, frame);//

            namedWindow("[frame]", WINDOW_NORMAL);

            imshow("[frame]",frame);

        }

imshow("image", frame);  //显示当前帧

    }

return 0;

}

总结

到此这篇关于OpenCV2学习笔记之视频流读取与处理的文章就介绍到这了,更多相关OpenCV视频流读取与处理内容请搜索我们以前的文章或继续浏览下面的相关文章希望大家以后多多支持我们!

(0)

相关推荐

  • 基于OpenCV的网络实时视频流传输的实现

    很多小伙伴都不会在家里或者办公室安装网络摄像头或监视摄像头.但是有时,大家又希望能够随时随地观看视频直播. 大多数人会选择使用IP摄像机(Internet协议摄像机)而不是CCTV(闭路电视),因为它们具有更高的分辨率并降低了布线成本.在本文中,我们将重点介绍IP摄像机.IP摄像机是一种数字 摄像机,可以通过IP网络接收控制数据并发送图像数据,并且不需要本地记录设备.大多数IP摄像机都是基于RTSP(实时流协议)的,因此Internet浏览器本身"不支持"它. 01.如何使用Web浏览

  • python环境下OPenCV处理视频流局部区域像素值

    参考我之前写的处理图片的文章:Python+OpenCV实现[图片]局部区域像素值处理(改进版) 开发环境:Python3.6.0 + OpenCV3.2.0 任务目标:摄像头采集图像(例如:480640),并对视频流每一帧(灰度图)特定矩形区域(48030)像素值进行行求和,得到一个480*1的数组,用这480个数据绘制条形图,即在逐帧采集视频流并处理后"实时"显示采集到的视频,并"实时"更新条形图.工作流程如下图: 源码: # -*- coding:utf-8

  • OpenCV2学习笔记之视频流读取与处理

    目录 前言 一. 读取视频序列 二. 处理视频帧 OpenCV:打开摄像头获取视频流 总结 前言 由于项目需要,计划实现九路视频拼接,因此必须熟悉OpenCV对视频序列的处理.视频信号处理是图像处理的一个延伸,所谓的视频序列是由按一定顺序进行排放的图像组成,即帧(Frame).在这里,主要记录下如何使用Qt+OpenCV读取视频中的每一帧,之后,在这基础上将一些图像处理的算法运用到每一帧上(如使用Canny算子检测视频中的边缘). 一. 读取视频序列 OpenCV提供了一个简便易用的框架以提取视

  • Python学习笔记之读取文件、OS模块、异常处理、with as语法示例

    本文实例讲述了Python学习笔记之读取文件.OS模块.异常处理.with as语法.分享给大家供大家参考,具体如下: 文件读取 #读取文件 f = open("test.txt","r") print(f.read()) #打印文件内容 #关闭文件 f.close() 获取文件绝对路径:OS模块 os.environ["xxx"]  获取系统环境变量 os.getcwd 获取当前python脚本工作路径 os.getpid() 获取当前进程ID

  • tensorflow学习笔记之tfrecord文件的生成与读取

    训练模型时,我们并不是直接将图像送入模型,而是先将图像转换为tfrecord文件,再将tfrecord文件送入模型.为进一步理解tfrecord文件,本例先将6幅图像及其标签转换为tfrecord文件,然后读取tfrecord文件,重现6幅图像及其标签. 1.生成tfrecord文件 import os import numpy as np import tensorflow as tf from PIL import Image filenames = [ 'images/cat/1.jpg'

  • go学习笔记读取consul配置文件详解

    目录 新建yaml文件 读取远程配置 新建yaml文件 在上文我们的 go学习笔记:使用 consul 做服务发现和配置共享 这里我们单独来用viper实现读取consul的配置, 我习惯与用yaml格式, 所以 首先 新建yaml文件 store: book: - author: john price: 10 - author: ken price: 12 bicycle: color: red price: 19.95 读取远程配置 可以直接调用viper.AddRemoteProvider

  • linux Shell学习笔记第一天

    以下是Shell学习1-2天学习笔记 ---------我是分隔符--------- 硬件去执行, 内核与硬件之间进行操作. 命令解析器. shell脚本的组成元素 系统命令 文本处理工具(sort.grep.sed.awk-) 变量 条件判断 环循结构 函数 Shell Scripts Center(SSC) ---------------------------- 非负Grep / awk 几天. 统计Wc Sort 排序 sort|head / sed字段处理 awk 数据区域判断 awk

  • DB2 UDB V8.1管理学习笔记(一)

    正在看的db2教程是:DB2 UDB V8.1管理学习笔记(一). DB2 基本概念 在DB2中由上至下的几个概念: 实例(Instance), 数据库(Database), 表空间(TableSpace), 容器(Container) 在一个操作系统中,DB2数据服务可以同时运行多个实例(有别于Oracle在一个系统内只能起一个实例). 数据库定义在实例中,一个实例可以包含多个数据库.在同一个实例中的不同数据库是完全独立的,分别拥有自己独立的系统编目表. 表空间有2种管理方式: DMS(Dat

  • DB2 UDB V8.1管理学习笔记(三)

    正在看的db2教程是:DB2 UDB V8.1管理学习笔记(三).强制断开已有连接,停止实例并删除.  $ db2idrop -f instance_name 用于在UNIX下迁移实例. $ db2imigr instance_name 更新实例,用于实例获得一些新的产品选项或修订包的访问权. $ db2iupdt instance_name 获取当前所处的实例. $ db2 get instance 当更新实例级别或数据库级别的参数后,有些可以立即生效,有些需要重新启动实例才可生效.immed

  • Angular4学习笔记之实现绑定和分包

    本文介绍了Angular4学习笔记之实现绑定和分包,分享给大家,希望对大家有帮助 src目录下的app/app.component.ts文件是一个标准的angular4组件的结构. 上面@component()括号内template属性里用`(这个符号不是单引号,而是键盘1左边.tab键上面的那个符号)包裹的是View,下面export的class部分是Controller. 希望实现的效果长这个样子: 万里长征第一步,先从修改View开始. 修改temlate里的HTML文件,改成下面的样子:

  • 值得收藏的asp.net基础学习笔记

    值得收藏的asp.net基础学习笔记,分享给大家. 1.概论 浏览器-服务器 B/S 浏览的 浏览器和服务器之间的交互,形成上网B/S模式 对于HTML传到服务器  交给服务器软件(IIS)  服务器软件直接读取静态页面代码,然后返回浏览器 对于ASPX传达服务器  交给服务器软件(IIS)   IIS发现自己处理不了aspx的文件,就去映射表根据后缀名里找到响应的处理程序(isapi,服务器扩展程序) 问题:IIS如何调用可扩展程序? 答:可扩展程序首先就是按照IIS提供的借口实现代码,所以I

  • JavaScript学习笔记之ES6数组方法

    ES6(ECMAScript 6)是即将到来的新版本JavaScript语言的标准,代号harmony(和谐之意,显然没有跟上我国的步伐,我们已经进入中国梦版本了).上一次标准的制订还是2009年出台的ES5.目前ES6的标准化工作正在进行中,预计会在14年12月份放出正式敲定的版本.但大部分标准已经就绪,且各浏览器对ES6的支持也正在实现中. ES6给数组添加了一些新特性,而这些新特性到目前为止完全可以运用到自己的业务层.在这一节中将总结有关于ES6给数组提供一些新特性的使用方法. ES6提供

随机推荐