OpenCV实现图像滤波之双边滤波

本文实例为大家分享了opencv实现双边滤波的具体代码,供大家参考,具体内容如下

1、2D卷积

#!/usr/bin/env python3
# -*- coding: utf-8 -*-

"""
使用自定义卷积核进行图像2D卷积操作
    函数原型:
        filter2D(src, ddepth, kernel[, dst[, anchor[, delta[, borderType]]]]) -> dst
        函数返回值:dst:2d卷积操作后的结果
        函数解析:
            ddepth:指定输出图像深度,-1表示与src深度保持一致
            kernel:卷积内核大小, 需大于零,可以不同,如核大小(4,5)
            anchor:锚点;默认值Point(-1,-1)表示锚位于内核中央
            delta:在将它们存储在dst中之前,将delta可选值添加到已过滤的像素中,默认为None
            borderType:边框模式用于图像外部的像素, 默认边缘像素拷贝
"""

import cv2 as cv
import numpy as np

img = cv.imread('./test.png')

# 自定义的一些卷积核
kernel = np.ones((5, 5), np.float32) / 25

kernel_user_1 = np.array([[0, 0, 1, 0, 0],
                          [0, 0, 1, 0, 0],
                          [1, 1, 1, 1, 1],
                          [0, 0, 1, 0, 0],
                          [0, 0, 1, 0, 0]]) / 9

kernel_user_2 = np.array([[1, 0, 0, 0, 1],
                          [0, 1, 0, 1, 0],
                          [0, 0, 1, 0, 0],
                          [0, 1, 0, 1, 0],
                          [1, 0, 0, 0, 1]]) / 9

kernel_user_3 = np.array([[0, 0, 0, 0, 0],
                          [0, 1, 1, 1, 0],
                          [0, 1, 1, 1, 0],
                          [0, 1, 1, 1, 0],
                          [0, 0, 0, 0, 0]]) / 9

kernel_user_4 = np.array([[1, 1, 1, 1, 1],
                          [1, 0, 0, 0, 1],
                          [1, 0, 0, 0, 1],
                          [1, 0, 0, 0, 1],
                          [1, 1, 1, 1, 1]]) / 16

dst = cv.filter2D(img, -1, kernel)
dst1 = cv.filter2D(img, -1, kernel_user_1)
dst2 = cv.filter2D(img, -1, kernel_user_2)
dst3 = cv.filter2D(img, -1, kernel_user_3)
dst4 = cv.filter2D(img, -1, kernel_user_4)

h1 = np.hstack((img, dst, dst1))
h2 = np.hstack((dst2, dst3, dst4))
cv.imshow('show', np.vstack((h1, h2)))

cv.waitKey(0)
cv.destroyAllWindows()

# 理解提高
small = np.array(range(10, 55, 5), np.uint8).reshape(3, -1)
print(small)
print('*' * 60)

small_filter = cv.filter2D(small, -1, (np.ones((3, 3), np.float32) / (3 * 3)))
print(small_filter)

2、双边滤波

#!/usr/bin/env python3
# -*- coding: utf-8 -*-

"""
    双边滤波器可以很好的保存图像边缘细节并滤除掉低频分量的噪音,
    但是双边滤波器的效率不是太高,花费的时间相较于其他滤波器而言也比较长。
    函数原型:
        bilateralFilter(src, d, sigmaColor, sigmaSpace[, dst[, borderType]]) -> dst
        重点参数解析:
            d:表示在过滤过程中每个像素邻域的直径范围。如果该值是非正数,则将由sigmaSpace计算
            sigmaColor:颜色空间过滤器的sigma值,值越大表示有越宽广的颜色混合到一起
            sigmaSpace: 坐标空间中滤波器的sigma值,如果该值较大,则意味着越远的像素将相互影响
            borderType:边框模式用于图像外部的像素, 默认边缘像素拷贝
"""

import cv2 as cv
import numpy as np

# img_path = './images/Fig4.11(a).jpg'
# img_path = './images/Fig5.08(b).jpg'
# img_path = './images/Fig0519(a)(florida_satellite_original).tif'
img_path = 'noisy2.png'

img = cv.imread(img_path)

def nothing(x):
    pass

cv.namedWindow('image')

# 创建滑动条
cv.createTrackbar('d', 'image', 0, 100, nothing)
cv.createTrackbar('sigmaColor', 'image', 0, 200, nothing)
cv.createTrackbar('sigmaSpace', 'image', 0, 200, nothing)

cv.imshow('img', img)
cv.imshow('image', img)

while True:
    k = cv.waitKey(25) & 0XFF
    if chr(k) == 'q':
        break
    if chr(k) == 'k':
        d = cv.getTrackbarPos('d', 'image')
        sigmaColor = cv.getTrackbarPos('sigmaColor', 'image')
        sigmaSpace = cv.getTrackbarPos('sigmaSpace', 'image')
        b_filter = cv.bilateralFilter(img, d, sigmaColor, sigmaSpace)
        ret, thresh = cv.threshold(b_filter, 127, 255, cv.THRESH_BINARY)
        sava_name = ''.join(('outputs/', 'b_filter', str(d), '_', str(sigmaColor), '_', str(sigmaColor)))
        cv.imshow('image', np.hstack((b_filter, thresh)))
        cv.imwrite(sava_name + '.jpg', b_filter)
        cv.imwrite(sava_name + '_thr.jpg', thresh)

cv.destroyAllWindows()

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持我们。

(0)

相关推荐

  • opencv 图像滤波(均值,方框,高斯,中值)

    为什么要使用滤波 消除图像中的噪声成分叫作图像的平滑化或滤波操作.信号或图像的能量大部分集中在幅度谱的低频和中频段是很常见的,而在较高频段,感兴趣的信息经常被噪声淹没.因此一个能降低高频成分幅度的滤波器就能够减弱噪声的影响. 如下图,左图带有椒盐噪声,右图为使用中值滤波处理后的图片. 图像滤波的目的有两个:一是抽出对象的特征作为图像识别的特征模式;另一个是为适应图像处理的要求,消除图像数字化时所混入的噪声. python +opencv讲解 均值滤波 含义 如图:如果我们想对红色点进行处理,则它

  • opencv3/C++图像滤波实现方式

    图像滤波在opencv中可以有多种实现形式 自定义滤波 如使用3×3的掩模: 对图像进行处理. 使用函数filter2D()实现 #include<opencv2/opencv.hpp> using namespace cv; int main() { //函数调用filter2D功能 Mat src,dst; src = imread("E:/image/image/daibola.jpg"); if(!src.data) { printf("can not l

  • 理想高通滤波实现Python opencv示例

    理想高通滤波实现 python opencv import numpy as np import cv2 from matplotlib import pyplot as plt plt.rcParams['font.sans-serif']=['SimHei'] plt.rcParams['axes.unicode_minus'] = False I = cv2.imread('capture3.png') cv2.imshow('original',I) (r,g,b) = cv2.spli

  • python-opencv 中值滤波{cv2.medianBlur(src, ksize)}的用法

    python-opencv 中值滤波{cv2.medianBlur(src, ksize)} 中值滤波将图像的每个像素用邻域 (以当前像素为中心的正方形区域)像素的 中值 代替 .与邻域平均法类似,但计算的是中值 #用中值法 for y in xrange(1,myh-1): for x in xrange(1,myw-1): lbimg[y,x]=np.median(tmpimg[y-1:y+2,x-1:x+2] 下面调用opencv的函数 # -*- coding: utf-8 -*- #c

  • opencv+python实现均值滤波

    本文实例为大家分享了opencv+python实现均值滤波的具体代码,供大家参考,具体内容如下 原理 均值滤波其实就是对目标像素及周边像素取平均值后再填回目标像素来实现滤波目的的方法,当滤波核的大小是3×3 3\times 33×3时,则取其自身和周围8个像素值的均值来代替当前像素值. 均值滤波也可以看成滤波核的值均为 1 的滤波. 优点:算法简单,计算速度快: 缺点:降低噪声的同时使图像产生模糊,特别是景物的边缘和细节部分. 代码 import cv2 as cv import numpy a

  • OpenCV-Python实现图像梯度与Sobel滤波器

    图像梯度 图像梯度计算的是图像变化的速度.对于图像的边缘部分,其灰度值变化较大,梯度值也较大:相反,对于图像中比较平滑的部分,其灰度值变化较小,相应的梯度值也较小.一般情况下,图像的梯度计算是图像的边缘信息. 其实梯度就是导数,但是图像梯度一般通过计算像素值的差来得到梯度的近似值,也可以说是近似导数.该导数可以用微积分来表示. 在微积分中,一维函数的一阶微分的基本定义是这样的: 而图像是一个二维函数f(x,y),其微分当然就是偏微分.因此有: 因为图像是一个离散的二维函数,ϵ不能无限小,我们的图

  • python+opencv实现高斯平滑滤波

    功能: 创建两个滑动条来分别控制高斯核的size和σσ的大小,这个程序是在阈值分割的那个程序上改动的.阈值分割程序在这 注意:由于σ=0σ=0时,opencv会根据窗口大小计算出σσ,所以,从0滑动σσ的滑动条时,会出现先边清晰又变模糊的现象 python+opencv实现阈值分割 python+opencv实现霍夫变换检测直线 (2016-5-10)到OpenCV-Python Tutorials's documentation!可以下载 代码: # -*- coding: utf-8 -*-

  • opencv实现轮廓高斯滤波平滑

    本文实例为大家分享了opencv实现轮廓高斯滤波平滑的具体代码,供大家参考,具体内容如下 一个小测试的题目: 在图像上点选,找到与点选处相邻的颜色相近的点集合,对该点集合提取轮廓,对该点集合轮廓平滑处理,显示处理结果. #include <opencv2/opencv.hpp> #include <iostream> using namespace std; using namespace cv; //************************************ //

  • OpenCV实现图像滤波之双边滤波

    本文实例为大家分享了opencv实现双边滤波的具体代码,供大家参考,具体内容如下 1.2D卷积 #!/usr/bin/env python3 # -*- coding: utf-8 -*- """ 使用自定义卷积核进行图像2D卷积操作 函数原型: filter2D(src, ddepth, kernel[, dst[, anchor[, delta[, borderType]]]]) -> dst 函数返回值:dst:2d卷积操作后的结果 函数解析: ddepth:指定

  • Opencv实现联合双边滤波

    本文实例为大家分享了Opencv实现联合双边滤波的具体代码,供大家参考,具体内容如下 1.介绍 双边滤波是一种可以保边去噪的滤波器,主要是因为它的核比较特殊,公式(1)为它的调用公式,公式(2)为它的核公式,其中,大括号左边公式为空间域小核,和高斯滤波器是一样的,而大括号右边公式为值域小核(f表示取其灰度值),而对于联合双边滤波与双边滤波的区别主要在于值域小核所用到的图片,如果所用到的图片是引入的另外一幅图像,那么就是在使用联合双边滤波. (1) (2) 2.代码 此代码就是用联合双边滤波简单去

  • OpenCV实现双边滤波算法

    本文实例为大家分享了OpenCV实现双边滤波算法的具体代码,供大家参考,具体内容如下 一.双边滤波 双边滤波是一种综合考虑滤波器内图像空域信息和滤波器内图像像素灰度值相似性的滤波算法,可以实现在保留区域信息的基础上实现对噪声的去除.对局部边缘的平滑.双边滤波对高频率的波动信号起到平滑的作用,同时保留大幅值变化的信号波动,进而实现对保留图像中边缘信息的作用.双边滤波具有美颜效果. 二.C++代码 #include <opencv2\opencv.hpp> #include <iostrea

  • OpenCV学习之图像加噪与滤波的实现详解

    目录 一.实验内容 二.实验环境和配置 三.实验原理及操作 1. 添加噪声 2.噪声二值化 3. 滤波处理 四.实验结果 2.椒盐噪声二值图与白噪声二值图 3.椒盐噪声处理图经处理后图像 4.白噪声处理图经处理后图像 五.结果分析 六.实验源码 一.实验内容 编写一Python程序,要求实现以下功能: 读入一幅图像. 使用两种以上的方法分别向图像中添加噪声. 输出一幅二值图像,图像中未加入噪声的区域为黑色,加入噪声的区域为白色. 使用三种滤波方法对上述添加了噪声的图像进行滤波处理. 输出滤波处理

  • C++图像处理之双边滤波

    本文实例为大家分享了C++图像处理之双边滤波的具体代码,供大家参考,具体内容如下 1. 近期在学习双边滤波相关知识,其原理如下(以后补上): 2 .灰度图双边滤波实现C++代码如下,网上大多数是基于8位灰度图和彩色图像的.(此次代码未经优化,可去除opencv依赖): //灰度图双边滤波 void m_bilateralFilter(cv::Mat src,cv::Mat& dst,int radius,float sigma_r,float sigma_d) { if (src.empty()

  • openCV中值滤波和均值滤波的代码实现

    目录 一.均值滤波 二.中值滤波  在开始我们今天的博客之前,我们需要先了解一下什么是滤波: 首先我们看一下图像滤波的概念.图像滤波,即在尽量保留图像细节特征的条件下对目标图像的噪声进行抑制,是图像预处理中不可缺少的操作,其处理效果的好坏将直接影响到后续图像处理和分析的有效性和可靠性. 下图左边是原图右边是噪声图: 消除图像中的噪声成分叫作图像的平滑化或滤波操作.信号或图像的能量大部分集中在幅度谱的低频和中频段是很常见的,而在较高频段,感兴趣的信息经常被噪声淹没.因此一个能降低高频成分幅度的滤波

  • OpenCV实现图像转换为漫画效果

    本文实例为大家分享了OpenCV实现图像转换为漫画的具体代码,供大家参考,具体内容如下 From <OpenCV By Example> 1.先canny提取图像的边缘并强化,翻转边缘为黑色,将像素值转换为0-1的值 2.将图像进行双边滤波处理,然后将像素值缩短为每10个灰度级为一个值 3.将前两步得到的结果相乘,显示结果 #include <iostream> using namespace std; #include "opencv2/core.hpp" #

  • Python OpenCV对图像进行模糊处理详解流程

    其实我们平时在深度学习中所说的卷积操作,在 opencv 中也可以进行,或者说是类似操作.那么它是什么操作呢?它就是图像的模糊(滤波)处理. 均值滤波 使用 opencv 中的cv2.blur(src, ksize)函数.其参数说明是: src: 原图像 ksize: 模糊核大小 原理:它只取内核区域下所有像素的平均值并替换中心元素.3x3 标准化的盒式过滤器如下所示: 特征:核中区域贡献率相同. 作用:对于椒盐噪声的滤除效果比较好. # -*-coding:utf-8-*- ""&q

  • 基于Opencv的图像卡通化实现代码

    OpenCV的全称是:Open Source Computer Vision Library.OpenCV是一个基于(开源)发行的跨平台计算机视觉库,可以运行在Linux.Windows和Mac OS操作系统上.它轻量级而且高效——由一系列 C 函数和少量 C++ 类构成,同时提供了Python.Ruby.MATLAB等语言的接口,实现了图像处理和计算机视觉方面的很多通用算法. 本文给大家介绍基于Opencv的图像卡通化,主要工具是高斯滤波器.细节增强滤波器.双边滤波.拉普拉斯滤波器. 铅笔素描

  • python opencv实现图像边缘检测

    本文利用python opencv进行图像的边缘检测,一般要经过如下几个步骤: 1.去噪 如cv2.GaussianBlur()等函数: 2.计算图像梯度 图像梯度表达的是各个像素点之间,像素值大小的变化幅度大小,变化较大,则可以认为是出于边缘位置,最多可简化为如下形式: 3.非极大值抑制 在获得梯度的方向和大小之后,应该对整幅图像做一个扫描,去除那些非边界上的点.对每一个像素进行检查,看这个点的梯度是不是周围具有相同梯度方向的点中最大的.如下图所示: 4.滞后阈值 现在要确定那些边界才是真正的

随机推荐