opencv+python实现图像矫正

本文实例为大家分享了opencv+python实现图像矫正的具体代码,供大家参考,具体内容如下

需求:将斜着拍摄的文本图像进行矫正

python代码

import numpy as np
import cv2 as cv

def shape_correction(img):
    (height, width) = img.shape[:2]
    print(img.shape)

    img_gau = cv.GaussianBlur(img, (5, 5), 0)
    canny = cv.Canny(img_gau, 60, 200)
    # cv.imshow("g-canny", canny)
    
    kernel = cv.getStructuringElement(cv.MORPH_CROSS, (4,3)) 
    
    dilated = cv.dilate(canny, kernel, iterations=8)  
    # cv.imshow('img_dilated', dilated)

    # 寻找轮廓
    contours, hierarchy = cv.findContours(dilated, cv.RETR_EXTERNAL, cv.CHAIN_APPROX_NONE)
    # print(len(contours), hierarchy, sep='\n')

    # 找到最外层面积最大的轮廓

    area = 0
    # print("area:{}".format(area))

    index = 0
    for i in range(len(contours)):
        x, y, w, h = cv.boundingRect(contours[i])
        # 排除非文本区域
        if w < 35 and h < 35:
            continue
        # 防止矩形区域过大不精准    
        if h > 0.99 * height or w > 0.99 * width:
            continue
        # draw rectangle around contour on original image
        # cv.rectangle(img, (x, y), (x + w, y + h), (255, 0, 255), 2)
        tmpArea = w * h
        if tmpArea >= area:
            area = tmpArea
            index = i

    # 得到最小外接矩形的(中心(x,y), (宽,高), 旋转角度)
    rect = cv.minAreaRect(contours[index])
    # 画出矩形框
    # box = cv.boxPoints(rect)
    # box = np.int0(box)
    # cv.drawContours(img, [box], 0, (0, 0, 255), 2)

    # cv.imshow('img', img)
    print("rect:{}".format(rect))
    angle = rect[-1]
    # print(angle)

    # 角度大于85度或小于5度不矫正
    if angle > 85 or angle < 5:
        angle = 0
    elif angle < 45:
        angle = angle - 0
    else:
        angle = angle - 90

    M = cv.getRotationMatrix2D(rect[0], angle, 1)
    rotated = cv.warpAffine(img, M, (width, height), flags=cv.INTER_CUBIC, borderValue=(255, 255, 255))
    
    cv.imshow('Rotated', rotated)
    return rotated

src = cv.imread('/res-normal.png', 0)
rotated = shape_correction(src)
cv.waitKey(0)

算法流程

算法核心思想:

获取图像中的文本区域矩形轮廓,找到其中面积最大的,对其进行最小外接矩形计算,得到最小外接矩形的旋转角度,再根据旋转角度进行仿射变换。

测试效果

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持我们。

(0)

相关推荐

  • 使用python opencv对畸变图像进行矫正的实现

    代码: __Author__ = "Shliang" __Email__ = "shliang0603@gmail.com" import os import cv2 import numpy as np from tqdm import tqdm def undistort(frame): fx = 685.646752 cx = 649.107905 fy = 676.658033 cy = 338.054431 k1, k2, p1, p2, k3 = -0.

  • python opencv实现图像矫正功能

    本文实例为大家分享了python opencv实现图像矫正的具体代码,供大家参考,具体内容如下 问题简介 一般的我们对图像中的目标进行分析和检测时,往往目标具有一定的倾斜角度,自然环境中正面向我们的目标实际是很少的,那将这些倾斜的目标“扶正”的过程就就叫做图像矫正. 透视变换demo 图像矫正使用的主要技术是透视变换.python-opencv 透视变换demo如下: import cv2 import numpy as np img = cv2.imread('/home/pzs/图片/1.j

  • Python Opencv基于透视变换的图像矫正

    本文实例为大家分享了Python Opencv基于透视变换的图像矫正,供大家参考,具体内容如下 一.自动获取图像顶点变换(获取图像轮廓顶点矫正) 图像旋转校正思路如下 1.以灰度图读入2.腐蚀膨胀,闭合等操作3.二值化图像4.获取图像顶点5.透视矫正 #(基于透视的图像矫正) import cv2 import math import numpy as np def Img_Outline(input_dir):     original_img = cv2.imread(input_dir)

  • Python OpenCV实现任意角度二维码矫正

    目录 前言 一般图片矫正方式 二维码图片矫正 思路 编码实现 前言 那天听到领导他们在讨论,说要将图片进行个矫正处理,还叫来了算法部的大佬来讨论将要如何处理这个,讨论场面很是激烈 不得不说好奇心是个很神奇的东西,就把我给吸引过去了 我定眼一看,感觉作为JAVA开发的我自己也能进行处理 因为看到了图片后,发现了图片中一个很重要的特征点: 要进行矫正的图片中都会有一个二维码图案,想要矫正的文字和二维码图案是处于同一水平线的. 如下面这个 要把图片中的“水中加点糖”四个字矫正,只需要把二维码矫正就可以

  • Python OpenCV 图像矫正的原理实现

    目录 题目描述 基本思路 核心代码 题目描述 目录hw1下的图像是一些胶片的照片,请将其进行度量矫正. 推荐流程:采用Canny算子,检测边缘点:采用Hough直线检测,根据边缘点检测胶片边缘对应的4条直线:4条直线在图像平面中的交点为胶片图像的4个顶点.根据4个顶点与真实世界中胶片的位置(假设胶片图像长宽比为4:3),得到两个平面之间的单应变换矩阵,并根据单应变换矩阵实现图像矫正. 基本思路 使用Canny算子,检测边缘点:以边缘点作为输入,采用Hough直线检测,检测出最多点共线的四条直线,

  • opencv实现文档矫正

    本文实例为大家分享了opencv实现文档矫正的具体代码,供大家参考,具体内容如下 原始文档 矫正后文档 思路: 只要获得倾斜文档的倾斜角度,然后通过仿射变化旋转一下就可以实现矫正了,这里获取倾斜角度的方法有两个,下面分别介绍 1.利用霍夫变换,文档内容都是平行的,首先利用利用霍夫变换检测直线,然后将所有直线的平均倾斜角度当做文档的倾斜角度,最后再进行仿射变换就可以了. import cv2 import numpy as np def imshow(img):     cv2.imshow("i

  • opencv+python实现图像矫正

    本文实例为大家分享了opencv+python实现图像矫正的具体代码,供大家参考,具体内容如下 需求:将斜着拍摄的文本图像进行矫正 python代码 import numpy as np import cv2 as cv def shape_correction(img):     (height, width) = img.shape[:2]     print(img.shape)     img_gau = cv.GaussianBlur(img, (5, 5), 0)     canny

  • Opencv+Python实现图像运动模糊和高斯模糊的示例

    运动模糊:由于相机和物体之间的相对运动造成的模糊,又称为动态模糊 Opencv+Python实现运动模糊,主要用到的函数是cv2.filter2D(): # coding: utf-8 import numpy as np import cv2 def motion_blur(image, degree=12, angle=45): image = np.array(image) # 这里生成任意角度的运动模糊kernel的矩阵, degree越大,模糊程度越高 M = cv2.getRotat

  • OpenCV+python手势识别框架和实例讲解

    基于OpenCV2.4.8和 python 2.7实现简单的手势识别. 以下为基本步骤 1.去除背景,提取手的轮廓 2. RGB->YUV,同时计算直方图 3.进行形态学滤波,提取感兴趣的区域 4.找到二值化的图像轮廓 5.找到最大的手型轮廓 6.找到手型轮廓的凸包 7.标记手指和手掌 8.把提取的特征点和手势字典中的进行比对,然后判断手势和形状 提取手的轮廓 cv2.findContours() 找到最大凸包cv2.convexHull(),然后找到手掌和手指的相对位置,定位手型的轮廓和关键点

  • Opencv+Python 色彩通道拆分及合并的示例

    一.图像色彩通道拆分 import cv2 img1 = cv2.imread(r"D:\OpencvTest\example.jpg", cv2.IMREAD_COLOR) # 传入一张彩色图片 b, g, r = cv2.split(img1) cv2.imshow("exampleB", b) # 展示B通道图 cv2.imshow("exampleG", g) cv2.imshow("exampleR", r) B通道

  • opencv python如何实现图像二值化

    这篇文章主要介绍了opencv python如何实现图像二值化,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下 代码如下 import cv2 as cv import numpy as np import matplotlib.pyplot as plt # 二值图像就是将灰度图转化成黑白图,没有灰,在一个值之前为黑,之后为白 # 有全局和局部两种 # 在使用全局阈值时,我们就是随便给了一个数来做阈值,那我们怎么知道我们选取的这个数的好坏呢?答

  • OpenCV python sklearn随机超参数搜索的实现

    本文介绍了OpenCV python sklearn随机超参数搜索的实现,分享给大家,具体如下: """ 房价预测数据集 使用sklearn执行超参数搜索 """ import matplotlib as mpl import matplotlib.pyplot as plt import numpy as np import sklearn import pandas as pd import os import sys import tens

  • opencv python Canny边缘提取实现过程解析

    这篇文章主要介绍了opencv python Canny边缘提取实现过程解析,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下 Canny是边缘提取算法,在1986年提出的是一个很好的边缘检测器Canny算法介绍 非最大信号抑制: 高低阈值连接: example import cv2 as cv import numpy as np # canny运算步骤:5步 # 1. 高斯模糊 - GaussianBlur # 2. 灰度转换 - cvtCol

  • opencv python图像梯度实例详解

    这篇文章主要介绍了opencv python图像梯度实例详解,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下 一阶导数与Soble算子 二阶导数与拉普拉斯算子 图像边缘: Soble算子: 二阶导数: 拉普拉斯算子: import cv2 as cv import numpy as np # 图像梯度(由x,y方向上的偏导数和偏移构成),有一阶导数(sobel算子)和二阶导数(Laplace算子) # 用于求解图像边缘,一阶的极大值,二阶的零点

  • opencv+python实现均值滤波

    本文实例为大家分享了opencv+python实现均值滤波的具体代码,供大家参考,具体内容如下 原理 均值滤波其实就是对目标像素及周边像素取平均值后再填回目标像素来实现滤波目的的方法,当滤波核的大小是3×3 3\times 33×3时,则取其自身和周围8个像素值的均值来代替当前像素值. 均值滤波也可以看成滤波核的值均为 1 的滤波. 优点:算法简单,计算速度快: 缺点:降低噪声的同时使图像产生模糊,特别是景物的边缘和细节部分. 代码 import cv2 as cv import numpy a

  • opencv python在视屏上截图功能的实现

    OpenCV简介 OpenCV是一个基于BSD许可(开源)发行的跨平台计算机视觉库,可以运行在Linux.Windows.Android和Mac OS操作系统上.它轻量级而且高效--由一系列 C 函数和少量 C++ 类构成,同时提供了Python.Ruby.MATLAB等语言的接口,实现了图像处理和计算机视觉方面的很多通用算法. OpenCV用C++语言编写,它的主要接口也是C++语言,但是依然保留了大量的C语言接口.该库也有大量的Python.Java and MATLAB/OCTAVE(版本

随机推荐