python多进程并发demo实例解析

这篇文章主要介绍了python多进程并发demo实例解析,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下

前言

下午需要简单处理一份数据,就直接随手写脚本处理了,但发现效率太低,速度太慢,就改成多进程了;

程序涉及计算、文件读写,鉴于计算内容挺多的,就用多进程了(计算密集)。

代码

import pandas as pd
from pathlib import Path
from concurrent.futures import ProcessPoolExecutor

parse_path = '/data1/v-gazh/CRSP/dsf_full_fields/parse'
source_path = '/data1/v-gazh/CRSP/dsf_full_fields/2th_split' # 目录中有3.3W个csv文件,串行的话,效率大打折扣

def parseData():
  source_path_list = list(Path(source_path).glob('*.csv'))
  multi_process = ProcessPoolExecutor(max_workers=20)
  multi_results = multi_process.map(func, source_path_list)

def func(p):
  source_p = str(p)
  parse_p = str(p).replace('2th_split', 'parse')
  df = pd.read_csv(source_p)
  df['date'] = pd.to_datetime(df['date'].astype(str)).dt.date
  df.sort_values(['date'], inplace=True)
  # 处理close为负的值(abs),添加status标识
  df['is_close'] = df['PRC'].map(lambda x: 0 if x < 0 or pd.isna(x) else 1)
  df['PRC'] = df['PRC'].abs()
  df.rename(columns={'CFACPR': 'factor'}, inplace=True)
  df['adj_low'] = df['BIDLO'] * df['factor']
  df['adj_high'] = df['ASKHI'] * df['factor']
  df['adj_close'] = df['PRC'] * df['factor']
  df['adj_open'] = df['OPENPRC'] * df['factor']
  df['adj_volume'] = df['VOL'] / df['factor']
  # calc change
  df['change'] = df['adj_close'].diff(1) / df['adj_close'].shift(1)   df.drop_duplicates(inplace=True)
  df.to_csv(parse_p, index=False)
parseData()

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持我们。

(0)

相关推荐

  • python并发编程之多进程、多线程、异步和协程详解

    最近学习python并发,于是对多进程.多线程.异步和协程做了个总结. 一.多线程 多线程就是允许一个进程内存在多个控制权,以便让多个函数同时处于激活状态,从而让多个函数的操作同时运行.即使是单CPU的计算机,也可以通过不停地在不同线程的指令间切换,从而造成多线程同时运行的效果. 多线程相当于一个并发(concunrrency)系统.并发系统一般同时执行多个任务.如果多个任务可以共享资源,特别是同时写入某个变量的时候,就需要解决同步的问题,比如多线程火车售票系统:两个指令,一个指令检查票是否卖完

  • python并发编程多进程之守护进程原理解析

    守护进程 主进程创建子进程目的是:主进程有一个任务需要并发执行,那开启子进程帮我并发执行任务 主进程创建子进程,然后将该进程设置成守护自己的进程 关于守护进程需要强调两点: 其一:守护进程会在主进程代码执行结束后就终止 其二:守护进程内无法再开启子进程,否则抛出异常:AssertionError: daemonic processes are not allowed to have children 如果我们有两个任务需要并发执行,那么开一个主进程和一个子进程分别去执行就ok了,如果子进程的任务

  • Python并发之多进程的方法实例代码

    一,进程的理论基础 一个应用程序,归根结底是一堆代码,是静态的,而进程才是执行中的程序,在一个程序运行的时候会有多个进程并发执行. 进程和线程的区别: 进程是系统资源分配的基本单位. 一个进程内可以包含多个线程,属于一对多的关系,进程内的资源,被其内的线程共享 线程是进程运行的最小单位,如果说进程是完成一个功能,那么其线程就是完成这个功能的基本单位 进程间资源不共享,多进程切换资源开销,难度大,同一进程内的线程资源共享,多线程切换资源开销,难度小 进程与线程的共同点: 都是为了提高程序运行效率,

  • Python多进程并发(multiprocessing)用法实例详解

    本文实例讲述了Python多进程并发(multiprocessing)用法.分享给大家供大家参考.具体分析如下: 由于Python设计的限制(我说的是咱们常用的CPython).最多只能用满1个CPU核心. Python提供了非常好用的多进程包multiprocessing,你只需要定义一个函数,Python会替你完成其他所有事情.借助这个包,可以轻松完成从单进程到并发执行的转换. 1.新建单一进程 如果我们新建少量进程,可以如下: import multiprocessing import t

  • python并发编程多进程 模拟抢票实现过程

    抢票是并发执行 多个进程可以访问同一个文件 多个进程共享同一文件,我们可以把文件当数据库,用多个进程模拟多个人执行抢票任务 db.txt {"count": 1} 并发运行,效率高,但竞争写同一文件,数据写入错乱,只有一张票,都卖成功给了10个人 #文件db.txt的内容为:{"count":1} #注意一定要用双引号,不然json无法识别 from multiprocessing import Process import time import json cla

  • Python控制多进程与多线程并发数总结

    一.前言 本来写了脚本用于暴力破解密码,可是1秒钟尝试一个密码2220000个密码我的天,想用多线程可是只会一个for全开,难道开2220000个线程吗?只好学习控制线程数了,官方文档不好看,觉得结构不够清晰,网上找很多文章也都不很清晰,只有for全开线程,没有控制线程数的具体说明,最终终于根据多篇文章和官方文档算是搞明白基础的多线程怎么实现法了,怕长时间不用又忘记,找着麻烦就贴这了,跟我一样新手也可以参照参照. 先说进程和线程的区别: 地址空间:进程内的一个执行单元;进程至少有一个线程;它们共

  • python并发编程多进程 互斥锁原理解析

    运行多进程 每个子进程的内存空间是互相隔离的 进程之间数据不能共享的 互斥锁 但是进程之间都是运行在一个操作系统上,进程之间数据不共享,但是共享同一套文件系统,所以访问同一个文件,或同一个打印终端, 是可以的,而共享带来的是竞争,竞争带来的结果就是错乱 #并发运行,效率高,但竞争同一打印终端,带来了打印错乱 from multiprocessing import Process import time def task(name): print("%s 1" % name) time.

  • python多进程并发demo实例解析

    这篇文章主要介绍了python多进程并发demo实例解析,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下 前言 下午需要简单处理一份数据,就直接随手写脚本处理了,但发现效率太低,速度太慢,就改成多进程了: 程序涉及计算.文件读写,鉴于计算内容挺多的,就用多进程了(计算密集). 代码 import pandas as pd from pathlib import Path from concurrent.futures import Process

  • Python 多进程并发操作中进程池Pool的实例

    在利用Python进行系统管理的时候,特别是同时操作多个文件目录,或者远程控制多台主机,并行操作可以节约大量的时间.当被操作对象数目不大时,可以直接利用multiprocessing中的Process动态成生多个进程,10几个还好,但如果是上百个,上千个目标,手动的去限制进程数量却又太过繁琐,这时候进程池Pool发挥作用的时候就到了. Pool可以提供指定数量的进程,供用户调用,当有新的请求提交到pool中时,如果池还没有满,那么就会创建一个新的进程用来执行该请求:但如果池中的进程数已经达到规定

  • Python多进程并发与多线程并发编程实例总结

    本文实例总结了Python多进程并发与多线程并发.分享给大家供大家参考,具体如下: 这里对python支持的几种并发方式进行简单的总结. Python支持的并发分为多线程并发与多进程并发(异步IO本文不涉及).概念上来说,多进程并发即运行多个独立的程序,优势在于并发处理的任务都由操作系统管理,不足之处在于程序与各进程之间的通信和数据共享不方便:多线程并发则由程序员管理并发处理的任务,这种并发方式可以方便地在线程间共享数据(前提是不能互斥).Python对多线程和多进程的支持都比一般编程语言更高级

  • python多进程实现进程间通信实例

    python中的多线程其实并不是真正的多线程,如果想要充分地使用多核CPU的资源,在python中大部分情况需要使用多进程.Python提供了非常好用的多进程包multiprocessing,只需要定义一个函数,Python会完成其他所有事情.借助这个包,可以轻松完成从单进程到并发执行的转换.multiprocessing支持子进程.通信和共享数据.执行不同形式的同步,提供了Process.Queue.Pipe.Lock等组件. multiprocessing.Queue() 以Queue为例,

  • 理论讲解python多进程并发编程

    一.什么是进程 进程:正在进行的一个过程或者说一个任务.而负责执行任务则是cpu. 二.进程与程序的区别 程序:仅仅是一堆代 进程:是指打开程序运行的过程 三.并发与并行 并发与并行是指cpu运行多个程序的方式 不管是并行与并发,在用户看起来都是'同时'运行的,他们都只是一个任务而已,正在干活的是cpu,而一个cpu只能执行一个任务. 并行就相当于有好多台设备,可以同时供好多人使用. 而并发就相当于只有一台设备,供几个人轮流用,每个人用一会就换另一个人. 所以只有多个cpu才能实现并行,而一个c

  • Python元字符的用法实例解析

    反斜杠的作用: 要想将一个元字符^当一个普通字符处理,加反斜杠 例如: >>>import re >>>r=r'\^abc' >>>re.findall(r,'^abc ^abc ^abc') ['^abc','^abc','^abc'] \d匹配任何十进制数,它相当于类[0-9]. \D匹配任何非数字字符,它相当于类[^0-9] \s匹配任何空白字符,他相当于类[\t\n\r\f\v] \S匹配任何非空白字符,它相当于类[^\t\n\r\f\v] \

  • python如何重载模块实例解析

    本文首先介绍了Python中的模块的概念,谈到了一个模块往往由多个模块组成,然后通过具体实例,分析了模块重载的相关内容,具体介绍如下. 模块是Python程序架构的一个核心概念,较大的程序往往以多个模块文件的形式呈现,一个模块被设计成主文件或顶层文件,用来启动整个Python程序.每个以.py为后缀的Python源代码文件都是一个模块,其他文件可通过"导入"读取这个模块的内容.从一般意义上讲,模块就是变量名的封装.如写一个模块test.py,包含一个两个变量名name.age. nam

  • Python中property属性实例解析

    本文主要讲述的是对Python中property属性(特性)的理解,具体如下. 定义及作用: 在property类中,有三个成员方法和三个装饰器函数. 三个成员方法分别是:fget.fset.fdel,它们分别用来管理属性访问: 三个装饰器函数分别是:getter.setter.deleter,它们分别用来把三个同名的类方法装饰成property. fget方法用来管理类实例属性的获取,fset方法用来管理类实例属性的赋值,fdel方法用来管理类实例属性的删除: getter装饰器把一个自定义类

  • Python生成器以及应用实例解析

    本文研究的主要是Python生成器及其应用,具体如下. 一.定义 可以理解为一种数据类型,这种数据类型自动实现了迭代器协议(其他的数据类型需要调用自己内置的__iter__方法),所以生成器就是可迭代对象 二.生成器的两种形式(Python有两种不同的方式提供生成器) 1.生成器函数:常规函数定义,但是,使用yield语句而不是return语句返回结果.yield语句一次返回一个结果,在每个结果中间,挂起函数的状态,以便下次重它离开的地方继续执行 yield的功能: 把函数的结果做生迭代器(以一

随机推荐