Java多线程之同步工具类CyclicBarrier

目录
  • 1 CyclicBarrier方法说明
  • 2 CyclicBarrier实例
  • 3 CyclicBarrier源码解析
    • CyclicBarrier构造函数
    • await方法
    • nextGeneration的源码
    • breakBarrier源码
    • isBroken方法
    • reset方法
    • getNumberWaiting方法

前言:

CyclicBarrier是一个同步工具类,它允许一组线程互相等待,直到达到某个公共屏障点。与CountDownLatch不同的是该barrier在释放线程等待后可以重用,所以它称为循环(Cyclic)的屏障(Barrier)。
CyclicBarrier支持一个可选的Runnable命令,在一组线程中的最后一个线程到达之后(但在释放所有线程之前),该命令只在每个屏障点运行一次。若再继续所有的参与线程之前更新共享状态,此屏蔽操作很有用。

1 CyclicBarrier方法说明

CyclicBarrier提供的方法有:

  • CyclicBarrier(parties):初始化相互等待的线程数量的构造方法。
  • CyclicBarrier(parties,Runnable barrierAction):初始化相互等待的线程数量以及屏障线程的构造方法。

屏障线程的运行时机:

等待的线程数量=parties之后,CyclicBarrier打开屏障之前。
举例:在分组计算中,每个线程负责一部分计算,最终这些线程计算结束之后,交由屏障线程进行汇总计算。

int getParties():获取CyclicBarrier打开屏障的线程数量,也成为方数。

int getNumberWaiting():获取正在CyclicBarrier上等待的线程数量。

int await():CyclicBarrier上进行阻塞等待,直到发生以下情形之一:

  • CyclicBarrier上等待的线程数量达到parties,则所有线程被释放,继续执行。
  • 当前线程被中断,则抛出InterruptedException异常,并停止等待,继续执行。
  • 其他等待的线程被中断,则当前线程抛出BrokenBarrierException异常,并停止等待,继续执行。
  • 其他等待的线程超时,则当前线程抛出BrokenBarrierException异常,并停止等待,继续执行。
  • 其他线程调用CyclicBarrier.reset()方法,则当前线程抛出BrokenBarrierException异常,并停止等待,继续执行。

int await(timeout,TimeUnit):CyclicBarrier上进行限时的阻塞等待,直到发生以下情形之一:

  • CyclicBarrier上等待的线程数量达到parties,则所有线程被释放,继续执行。
  • 当前线程被中断,则抛出InterruptedException异常,并停止等待,继续执行。
  • 当前线程等待超时,则抛出TimeoutException异常,并停止等待,继续执行。
  • 其他等待的线程被中断,则当前线程抛出BrokenBarrierException异常,并停止等待,继续执行。
  • 其他等待的线程超时,则当前线程抛出BrokenBarrierException异常,并停止等待,继续执行。
  • 其他线程调用CyclicBarrier.reset()方法,则当前线程抛出BrokenBarrierException异常,并停止等待,继续执行。

boolean isBroken():获取是否破损标志位broken的值,此值有以下几种情况:

  • CyclicBarrier初始化时,broken=false,表示屏障未破损。
  • 如果正在等待的线程被中断,则broken=true,表示屏障破损。
  • 如果正在等待的线程超时,则broken=true,表示屏障破损。
  • 如果有线程调用CyclicBarrier.reset()方法,则broken=false,表示屏障回到未破损状态。

void reset():使得CyclicBarrier回归初始状态,直观来看它做了两件事:

  • 如果有正在等待的线程,则会抛出BrokenBarrierException异常,且这些线程停止等待,继续执行。
  • 将是否破损标志位broken置为false

2 CyclicBarrier实例

假若有若干个线程都要进行写数据操作,并且只有所有线程都完成写数据操作之后,这些线程才能继续做后面的事情,此时就可以利用CyclicBarrier了:

 public static void main(String[] args) {
        int N = 4;
        CyclicBarrier barrier  = new CyclicBarrier(N);
        for(int i=0;i<N;i++)
            new Writer(barrier).start();
    }
    static class Writer extends Thread{
        private CyclicBarrier cyclicBarrier;
        public Writer(CyclicBarrier cyclicBarrier) {
            this.cyclicBarrier = cyclicBarrier;
        }

        @Override
        public void run() {
            System.out.println("线程"+Thread.currentThread().getName()+"正在写入数据...");
            try {
                Thread.sleep(5000);      //以睡眠来模拟写入数据操作
                System.out.println("线程"+Thread.currentThread().getName()+"写入数据完毕,等待其他线程写入完毕");
                cyclicBarrier.await();
            } catch (InterruptedException e) {
                e.printStackTrace();
            }catch(BrokenBarrierException e){
                e.printStackTrace();
            }
            System.out.println("所有线程写入完毕,继续处理其他任务...");
        }
    }

线程Thread-0正在写入数据...
线程Thread-3正在写入数据...
线程Thread-1正在写入数据...
线程Thread-2正在写入数据...
线程Thread-1写入数据完毕,等待其他线程写入完毕
线程Thread-3写入数据完毕,等待其他线程写入完毕
线程Thread-2写入数据完毕,等待其他线程写入完毕
线程Thread-0写入数据完毕,等待其他线程写入完毕
所有线程写入完毕,继续处理其他任务...
所有线程写入完毕,继续处理其他任务...
所有线程写入完毕,继续处理其他任务...
所有线程写入完毕,继续处理其他任务...

从上面输出结果可以看出,每个写入线程执行完写数据操作之后,就在等待其他线程写入操作完毕。

当所有线程线程写入操作完毕之后,所有线程就继续进行后续的操作了。

如果想在所有线程写入操作完之后,进行额外的其他操作可以为CyclicBarrier提供Runnable参数:

public class CyclicBarrierTest {

    public static void main(String[] args) {
        int N = 4;
        CyclicBarrier barrier  = new CyclicBarrier(N,new Runnable() {
            @Override
            public void run() {
                System.out.println("当前线程"+Thread.currentThread().getName());
            }
        });

        for(int i=0;i<N;i++)
            new Writer(barrier).start();
    }
    static class Writer extends Thread{
        private CyclicBarrier cyclicBarrier;
        public Writer(CyclicBarrier cyclicBarrier) {
            this.cyclicBarrier = cyclicBarrier;
        }

        @Override
        public void run() {
            System.out.println("线程"+Thread.currentThread().getName()+"正在写入数据...");
            try {
                Thread.sleep(3000);      //以睡眠来模拟写入数据操作
                System.out.println("线程"+Thread.currentThread().getName()+"写入数据完毕,等待其他线程写入完毕");
                cyclicBarrier.await();
            } catch (InterruptedException e) {
                e.printStackTrace();
            }catch(BrokenBarrierException e){
                e.printStackTrace();
            }
            System.out.println("所有线程写入完毕,继续处理其他任务...");
        }
    }

}

线程Thread-0正在写入数据...
线程Thread-3正在写入数据...
线程Thread-2正在写入数据...
线程Thread-1正在写入数据...
线程Thread-1写入数据完毕,等待其他线程写入完毕
线程Thread-3写入数据完毕,等待其他线程写入完毕
线程Thread-0写入数据完毕,等待其他线程写入完毕
线程Thread-2写入数据完毕,等待其他线程写入完毕
当前线程Thread-2
所有线程写入完毕,继续处理其他任务...
所有线程写入完毕,继续处理其他任务...
所有线程写入完毕,继续处理其他任务...
所有线程写入完毕,继续处理其他任务...

从结果可以看出,当四个线程都到达barrier状态后,会从四个线程中选择一个线程去执行Runnable

await指定时间的效果:

public class CyclicBarrierTest {

    public static void main(String[] args) {
        int N = 4;
        CyclicBarrier barrier = new CyclicBarrier(N);

        for (int i = 0; i < N; i++) {
            if (i < N - 1)
                new Writer(barrier).start();
            else {
                try {
                    //运行时间远小于2000(cyclicBarrier.await 指定时间) 就不会抛出TimeoutException
                    Thread.sleep(3000);
                } catch (InterruptedException e) {
                    e.printStackTrace();
                }
                new Writer(barrier).start();
            }

        }
    }

    static class Writer extends Thread {
        private CyclicBarrier cyclicBarrier;

        public Writer(CyclicBarrier cyclicBarrier) {
            this.cyclicBarrier = cyclicBarrier;
        }

        @Override
        public void run() {
            System.out.println("线程" + Thread.currentThread().getName() + "正在写入数据...");
            try {
                Thread.sleep(3000);      //以睡眠来模拟写入数据操作
                System.out.println("线程" + Thread.currentThread().getName() + "写入数据完毕,等待其他线程写入完毕");
                try {
                    cyclicBarrier.await(2000, TimeUnit.MILLISECONDS);
                } catch (TimeoutException e) {
                    e.printStackTrace();
                }
            } catch (InterruptedException e) {
                e.printStackTrace();
            } catch (BrokenBarrierException e) {
                e.printStackTrace();
            }
            System.out.println(Thread.currentThread().getName() + "所有线程写入完毕,继续处理其他任务...");
        }
    }
}

线程Thread-0正在写入数据...
线程Thread-2正在写入数据...
线程Thread-1正在写入数据...
线程Thread-0写入数据完毕,等待其他线程写入完毕
线程Thread-2写入数据完毕,等待其他线程写入完毕
线程Thread-1写入数据完毕,等待其他线程写入完毕
线程Thread-3正在写入数据...
java.util.concurrent.TimeoutException
    at java.util.concurrent.CyclicBarrier.dowait(CyclicBarrier.java:257)
    at java.util.concurrent.CyclicBarrier.await(CyclicBarrier.java:435)
    at CyclicBarrierTest$Writer.run(CyclicBarrierTest.java:43)
Thread-0所有线程写入完毕,继续处理其他任务...
java.util.concurrent.BrokenBarrierException
    at java.util.concurrent.CyclicBarrier.dowait(CyclicBarrier.java:250)
    at java.util.concurrent.CyclicBarrier.await(CyclicBarrier.java:435)
    at CyclicBarrierTest$Writer.run(CyclicBarrierTest.java:43)
Thread-1所有线程写入完毕,继续处理其他任务...
java.util.concurrent.BrokenBarrierException
    at java.util.concurrent.CyclicBarrier.dowait(CyclicBarrier.java:250)
    at java.util.concurrent.CyclicBarrier.await(CyclicBarrier.java:435)
    at CyclicBarrierTest$Writer.run(CyclicBarrierTest.java:43)
Thread-2所有线程写入完毕,继续处理其他任务...
线程Thread-3写入数据完毕,等待其他线程写入完毕
java.util.concurrent.BrokenBarrierException
    at java.util.concurrent.CyclicBarrier.dowait(CyclicBarrier.java:207)
    at java.util.concurrent.CyclicBarrier.await(CyclicBarrier.java:435)
    at CyclicBarrierTest$Writer.run(CyclicBarrierTest.java:43)
Thread-3所有线程写入完毕,继续处理其他任务...

上面的代码在main方法的for循环中,故意让最后一个线程启动延迟,因为在前面三个线程都达到barrier之后,等待了指定的时间发现第四个线程还没有达到barrier,就抛出异常并继续执行后面的任务。

另外CyclicBarrier是可以重用的,看下面这个例子:

public class CyclicBarrierTest {

    public static void main(String[] args) {
        int N = 4;
        CyclicBarrier barrier  = new CyclicBarrier(N);

        for(int i=0;i<N;i++) {
            new Writer(barrier).start();
        }

        try {
            Thread.sleep(5000);
        } catch (InterruptedException e) {
            e.printStackTrace();
        }

        System.out.println("CyclicBarrier重用");

        for(int i=0;i<N;i++) {
            new Writer(barrier).start();
        }
    }
    static class Writer extends Thread{
        private CyclicBarrier cyclicBarrier;
        public Writer(CyclicBarrier cyclicBarrier) {
            this.cyclicBarrier = cyclicBarrier;
        }

        @Override
        public void run() {
            System.out.println("线程"+Thread.currentThread().getName()+"正在写入数据...");
            try {
                Thread.sleep(3000);      //以睡眠来模拟写入数据操作
                System.out.println("线程"+Thread.currentThread().getName()+"写入数据完毕,等待其他线程写入完毕");

                cyclicBarrier.await();
            } catch (InterruptedException e) {
                e.printStackTrace();
            }catch(BrokenBarrierException e){
                e.printStackTrace();
            }
            System.out.println(Thread.currentThread().getName()+"所有线程写入完毕,继续处理其他任务...");
        }
    }
}

线程Thread-0正在写入数据...
线程Thread-3正在写入数据...
线程Thread-2正在写入数据...
线程Thread-1正在写入数据...
线程Thread-1写入数据完毕,等待其他线程写入完毕
线程Thread-0写入数据完毕,等待其他线程写入完毕
线程Thread-3写入数据完毕,等待其他线程写入完毕
线程Thread-2写入数据完毕,等待其他线程写入完毕
Thread-2所有线程写入完毕,继续处理其他任务...
Thread-1所有线程写入完毕,继续处理其他任务...
Thread-3所有线程写入完毕,继续处理其他任务...
Thread-0所有线程写入完毕,继续处理其他任务...
CyclicBarrier重用
线程Thread-4正在写入数据...
线程Thread-5正在写入数据...
线程Thread-6正在写入数据...
线程Thread-7正在写入数据...
线程Thread-5写入数据完毕,等待其他线程写入完毕
线程Thread-4写入数据完毕,等待其他线程写入完毕
线程Thread-7写入数据完毕,等待其他线程写入完毕
线程Thread-6写入数据完毕,等待其他线程写入完毕
Thread-6所有线程写入完毕,继续处理其他任务...
Thread-5所有线程写入完毕,继续处理其他任务...
Thread-4所有线程写入完毕,继续处理其他任务...
Thread-7所有线程写入完毕,继续处理其他任务...

从执行结果可以看出,在初次的4个线程越过barrier状态后,又可以用来进行新一轮的使用。而CountDownLatch无法进行重复使用。

3 CyclicBarrier源码解析

先看一下CyclicBarrier中成员变量的组成:

    /** The lock for guarding barrier entry */
    private final ReentrantLock lock = new ReentrantLock();
    /** Condition to wait on until tripped */
    private final Condition trip = lock.newCondition();
    /** The number of parties */
    private final int parties;//拦截的线程数量
    /* The command to run when tripped */
    private final Runnable barrierCommand; //当屏障撤销时,需要执行的屏障操作
    //当前的Generation。每当屏障失效或者开闸之后都会自动替换掉。从而实现重置的功能。
    private Generation generation = new Generation();

    /**
     * Number of parties still waiting. Counts down from parties to 0
     * on each generation.  It is reset to parties on each new
     * generation or when broken.
     */
    private int count;

可以看出,CyclicBarrier是由ReentrantLockCondition来实现的。具体每个变量都有什么意义,我们在分析源码的时候具体说。
我们主要从CyclicBarrier的构造方法和它的await方法分析说起。

CyclicBarrier构造函数

CyclicBarrier有两个构造函数:

//带Runnable参数的函数
 public CyclicBarrier(int parties, Runnable barrierAction) {
        if (parties <= 0) throw new IllegalArgumentException();
        this.parties = parties;//有几个运动员要参赛
        this.count = parties;//目前还需要几个运动员准备好
        //你要在所有线程都继续执行下去之前要执行什么操作,可以为空
        this.barrierCommand = barrierAction;
    }
//不带Runnable参数的函数
 public CyclicBarrier(int parties) {
     this(parties, null);
 }

其中,第二个构造函数调用的是第一个构造函数,这个 Runnable barrierAction 参数是什么呢?其实在上面的小示例中我们就用到了这个Runnable参数,它就是在所有线程都准备好之后,满足Barrier条件时,并且在所有线程继续执行之前,我们可以执行这个Runnable。但是值得注意的是,这不是新起了一个线程,而是通过最后一个准备好的(也就是最后一个到达Barrier的)线程承担启动的。这一点我们在上面示例中打印的运行结果中也可以看出来:Thread-2线程是最后一个准备好的,就是它执行的这个barrierAction
这里partiescount不要混淆,parties是表示必须有几个线程要到达Barrier,而count是表示目前还有几个线程未到达Barrier。也就是说,只有当count参数为0时,Barrier条件即满足,所有线程可以继续执行。
count变量是怎么减少到0的呢?是通过Barrier执行的await方法。下面我们就看一下await方法。

await方法

    public int await() throws InterruptedException, BrokenBarrierException {
        try {
            return dowait(false, 0L);
        } catch (TimeoutException toe) {
            throw new Error(toe); // cannot happen
        }

await方法调用的dowait方法:

   private int dowait(boolean timed, long nanos)
        throws InterruptedException, BrokenBarrierException,
               TimeoutException {
        final ReentrantLock lock = this.lock;
        lock.lock();//获取ReentrantLock互斥锁
        try {
            final Generation g = generation;//获取generation对象

            if (g.broken)//如果generation损坏,抛出异常
                throw new BrokenBarrierException();

            if (Thread.interrupted()) {
                //如果当前线程被中断,则调用breakBarrier方法,停止CyclicBarrier,并唤醒所有线程
                breakBarrier();
                throw new InterruptedException();
            }

            int index = --count;// 看到这里了吧,count减1
            //index=0,也就是说,有0个线程未满足CyclicBarrier条件,也就是条件满足,
            //可以唤醒所有的线程了
            if (index == 0) {  // tripped
                boolean ranAction = false;
                try {
                   //这就是构造器的第二个参数,如果不为空的话,就执行这个Runnable的run方法,
                   //你看,这里是执行的是run方法,也就是说,并没有新起一个另外的线程,
                   //而是最后一个执行await操作的线程执行的这个run方法。
                    final Runnable command = barrierCommand;
                    if (command != null)
                        command.run(); //同步执行barrierCommand
                    ranAction = true;
                    nextGeneration(); //执行成功设置下一个nextGeneration
                    return 0;
                } finally {
                    if (!ranAction) . //如果barrierCommand执行失败,进行屏障破坏处理
                        breakBarrier();
                }
            }
            //如果当前线程不是最后一个到达的线程
            // loop until tripped, broken, interrupted, or timed out
            for (;;) {
                try {
                    if (!timed)
                        trip.await(); //调用Condition的await()方法阻塞
                    else if (nanos > 0L)
                        nanos = trip.awaitNanos(nanos); //调用Condition的awaitNanos()方法阻塞
                } catch (InterruptedException ie) {
                //如果当前线程被中断,则判断是否有其他线程已经使屏障破坏。若没有则进行屏障破坏处理,并抛出异常;否则再次中断当前线程
                    if (g == generation && ! g.broken) {
                        breakBarrier();//执行breakBarrier,唤醒所有线程
                        throw ie;
                    } else {
                        // We're about to finish waiting even if we had not
                        // been interrupted, so this interrupt is deemed to
                        // "belong" to subsequent execution.
                        Thread.currentThread().interrupt();
                    }
                }

                if (g.broken)//如果当前generation已经损坏,抛出异常
                    throw new BrokenBarrierException();

                if (g != generation)//如果generation已经更新换代,则返回index
                    return index;
                //如果是参数是超时等待,并且已经超时,则执行breakBarrier()方法
                //唤醒所有等待线程。
                if (timed && nanos <= 0L) {
                    breakBarrier();
                    throw new TimeoutException();
                }
            }
        } finally {
            lock.unlock();
        }
    }

简单来说,如果不发生异常,线程不被中断,那么dowait方法会调用Conditionawait方法(具体Condition的原理请看前面的文章),直到所有线程都准备好,即都执行了dowait方法,(做count的减操作,直到count=0),即CyclicBarrier条件已满足,就会执行唤醒线程操作,也就是上面的nextGeneration()方法。可能大家会有疑惑,这个Generation是什么东西呢?其实这个Generation定义的很简单,就一个布尔值的成员变量:

private Generation generation = new Generation();

private static class Generation {
    boolean broken = false;
}

Generation 可以理解成“代”,我们要知道,CyclicBarrier是可以重复使用的,CyclicBarrier中的同一批线程属于同一“代”,当所有线程都满足了CyclicBarrier条件,执行唤醒操作nextGeneration()方法时,会新new 出一个Generation,代表一下“代”。

nextGeneration的源码

    private void nextGeneration() {
        // signal completion of last generation
        trip.signalAll();//调用Condition的signalAll方法,唤醒所有await的线程
        // set up next generation
        count = parties;//重置count值
        //生成新的Generation,表示上一代的所有线程已经唤醒,进行更新换代
        generation = new Generation();
    }

breakBarrier源码

再来看一下breakBarrier的代码,breakBarrier方法是在当前线程被中断时执行的,用来唤醒所有的等待线程:

    private void breakBarrier() {
        generation.broken = true;//表示当代因为线程被中断,已经发成损坏了
        count = parties;//重置count值
        trip.signalAll();//调用Condition的signalAll方法,唤醒所有await的线程
    }

isBroken方法

    public boolean isBroken() {
        final ReentrantLock lock = this.lock;
        lock.lock();
        try {
            return generation.broken;
        } finally {
            lock.unlock();
        }
    }

判断此屏障是否处于中断状态。如果因为构造或最后一次重置而导致中断或超时,从而使一个或多个参与者摆脱此屏障点,或者因为异常而导致某个屏障操作失败,则返回true;否则返回false

reset方法

    //将屏障重置为其初始状态。
    public void reset() {
        final ReentrantLock lock = this.lock;
        lock.lock();
        try {
            //唤醒所有等待的线程继续执行,并设置屏障中断状态为true
            breakBarrier();   // break the current generation
            //唤醒所有等待的线程继续执行,并设置屏障中断状态为false
            nextGeneration(); // start a new generation
        } finally {
            lock.unlock();
        }
    }

getNumberWaiting方法

    //返回当前在屏障处等待的参与者数目,此方法主要用于调试和断言。
    public int getNumberWaiting() {
        final ReentrantLock lock = this.lock;
        lock.lock();
        try {
            return parties - count;
        } finally {
            lock.unlock();
        }
    }

总结:

1.CyclicBarrier可以用于多线程计算数据,最后合并计算结果的应用场景。
2.这个等待的await方法,其实是使用ReentrantLockCondition控制实现的。
3.CyclicBarrier可以重复使用。

到此这篇关于Java多线程之同步工具类CyclicBarrier的文章就介绍到这了,更多相关Java多线程 CyclicBarrier内容请搜索我们以前的文章或继续浏览下面的相关文章希望大家以后多多支持我们!

(0)

相关推荐

  • Java多线程下的其他组件之CyclicBarrier、Callable、Future和FutureTask详解

    CyclicBarrier 接着讲多线程下的其他组件,第一个要讲的就是CyclicBarrier.CyclicBarrier从字面理解是指循环屏障,它可以协同多个线程,让多个线程在这个屏障前等待,直到所有线程都达到了这个屏障时,再一起继续执行后面的动作.看一下CyclicBarrier的使用实例: public static class CyclicBarrierThread extends Thread { private CyclicBarrier cb; private int sleep

  • java多线程CyclicBarrier的使用案例,让线程起步走

    1.CyclicBarrier: 一个同步辅助类,用于协调多个子线程,让多个子线程在这个屏障前等待,直到所有子线程都到达了这个屏障时,再一起继续执行后面的动作. 2.使用场景举例: 年末公司组织团建,要求每一位员工周六上午8点[自驾车]到公司门口集合,然后[自驾车]前往目的地. 在这个案例中,公司作为主线程,员工作为子线程. 3.代码示例: package com.test.spring.support; import java.util.concurrent.BrokenBarrierExce

  • java多线程开发之通过对战游戏学习CyclicBarrier

    CyclicBarrier是java.util.concurrent包下面的一个工具类,字面意思是可循环使用(Cyclic)的屏障(Barrier),通过它可以实现让一组线程到达一个屏障(也可以叫同步点)时被阻塞,直到最后一个线程到达屏障时,所有被屏障拦截的线程才会继续执行. 这篇文章将介绍CyclicBarrier这个同步工具类的以下几点 通过案例分析 两种不同构造函数测试 CyclicBarrier和CountDownLatch的区别 await方法及源码分析. 需求 继上一篇CountDo

  • java多线程之CyclicBarrier的使用方法

    java多线程之CyclicBarrier的使用方法 public class CyclicBarrierTest { public static void main(String[] args) { ExecutorService service = Executors.newCachedThreadPool(); final CyclicBarrier cb = new CyclicBarrier(3); for(int i=0;i<3;i++){ Runnable runnable = n

  • Java多线程之同步工具类CyclicBarrier

    目录 1 CyclicBarrier方法说明 2 CyclicBarrier实例 3 CyclicBarrier源码解析 CyclicBarrier构造函数 await方法 nextGeneration的源码 breakBarrier源码 isBroken方法 reset方法 getNumberWaiting方法 前言: CyclicBarrier是一个同步工具类,它允许一组线程互相等待,直到达到某个公共屏障点.与CountDownLatch不同的是该barrier在释放线程等待后可以重用,所以

  • Java多线程之同步工具类Exchanger

    目录 1 Exchanger 介绍 2 Exchanger 实例 exchange等待超时 3 实现原理 1 Exchanger 介绍 前面分别介绍了CyclicBarrier.CountDownLatch.Semaphore,现在介绍并发工具类中的最后一个Exchange. Exchanger 是一个用于线程间协作的工具类,Exchanger用于进行线程间的数据交换,它提供一个同步点,在这个同步点,两个线程可以交换彼此的数据.这两个线程通过exchange 方法交换数据,如果第一个线程先执行e

  • Java多线程之同步工具类CountDownLatch

    前言: CountDownLatch是一个同步工具类,它允许一个或多个线程一直等待,直到其他线程执行完后再执行.例如,应用程序的主线程希望在负责启动框架服务的线程已经启动所有框架服务之后执行. 1 CountDownLatch主要方法 void await():如果当前count大于0,当前线程将会wait,直到count等于0或者中断. PS:当count等于0的时候,再去调用await() , 线程将不会阻塞,而是立即运行.后面可以通过源码分析得到. boolean await(long t

  • 教你如何使用Java多线程编程LockSupport工具类

    LockSupport类 用于创建锁和其他同步类的基本线程阻塞原语,此类与使用它的每个线程关联一个许可.如果获得许可,将立即返回对park的调用,并在此过程中消耗掉它:否则may会被阻止.调用unpark可使许可证可用(如果尚不可用).(不过与信号量不同,许可证不会累积.最多只能有一个.) 方法park和unpark提供了有效的阻塞和解阻塞线程的方法,这些线程不会遇到导致已弃用的方法Thread.suspend和Thread.resume无法用于以下问题:由于许可,在调用park的一个线程与试图

  • java多线程之并发工具类CountDownLatch,CyclicBarrier和Semaphore

    目录 CountDownLatch Semaphore CyclicBarrier 总结 CountDownLatch CountDownLatch允许一个或多个线程等待其他线程完成操作. 假设一个Excel文件有多个sheet,我们需要去记录每个sheet有多少行数据, 这时我们就可以使用CountDownLatch实现主线程等待所有sheet线程完成sheet的解析操作后,再继续执行自己的任务. public class CountDownLatchTest { private static

  • Java并发编程之工具类Semaphore的使用

    一.Semaphore的理解 Semaphore属于java.util.concurrent包: Semaphore翻译成字面意思为信号量,Semaphore可以控制同时访问的线程个数,通过acquire()获取一个许可,如果没有就等待,而release()释放一个许可. 二.Semaphore类中常用方法 public void acquire() 用来获取一个许可,若无许可能够获得,则会一直等待,直到获得许可. public void acquire(int permits) 获取permi

  • Java多线程同步工具类CountDownLatch详解

    目录 简介 核心方法 CountDownLatch如何使用 CountDownLatch运行流程 运用场景 总结 简介 CountDownLatch是一个多线程同步工具类,在多线程环境中它允许多个线程处于等待状态,直到前面的线程执行结束.从类名上看CountDown既是数量递减的意思,我们可以把它理解为计数器. 核心方法 countDown():计数器递减方法. await():使调用此方法的线程进入等待状态,直到计数器计数为0时主线程才会被唤醒. await(long, TimeUnit):在

  • 详解Java中CountDownLatch异步转同步工具类

    使用场景 由于公司业务需求,需要对接socket.MQTT等消息队列. 众所周知 socket 是双向通信,socket的回复是人为定义的,客户端推送消息给服务端,服务端的回复是两条线.无法像http请求有回复. 下发指令给硬件时,需要校验此次数据下发是否成功. 用户体验而言,点击按钮就要知道此次的下发成功或失败. 如上图模型, 第一种方案使用Tread.sleep 优点:占用资源小,放弃当前cpu资源 缺点: 回复速度快,休眠时间过长,仍然需要等待休眠结束才能返回,响应速度是固定的,无法及时响

  • Java线程的并发工具类实现原理解析

    目录 一.fork/join 1. Fork-Join原理 2. 工作窃取 3. 代码实现 二.CountDownLatch 三.CyclicBarrier 四.Semaphore 五.Exchange 六.Callable.Future.FutureTask 在JDK的并发包里提供了几个非常有用的并发工具类.CountDownLatch.CyclicBarrier和Semaphore工具类提供了一种并发流程控制的手段,Exchanger工具类则提供了在线程间交换数据的一种手段.本章会配合一些应

  • Java编程线程同步工具Exchanger的使用实例解析

    本文研究的主要是Java编程线程同步工具Exchanger的使用,下面看看具体内容. 如果两个线程在运行过程中需要交换彼此的信息,比如一个数据或者使用的空间,就需要用到Exchanger这个类,Exchanger为线程交换信息提供了非常方便的途径,它可以作为两个线程交换对象的同步点,只有当每个线程都在进入 exchange ()方法并给出对象时,才能接受其他线程返回时给出的对象. 每次只能两个线程交换数据,如果有多个线程,也只有两个能交换数据.下面看个通俗的例子:一手交钱一首交货! public

随机推荐