C++模板Template详解及其作用介绍

目录
  • 1. 模板
  • 2. 函数模板
    • 2.1 函数模板概念
    • 2.2 函数模板格式
    • 2.3 函数模板原理
    • 2.4 函数模板的实例化
    • 2.5 模板参数的匹配原则
    • 2.6声明定义分离
  • 3. 类模板
    • 3.1 类模板格式
    • 3.2 类模板的实例化
    • 3.3 类模板中函数放在类外进行定义时
  • 4. 模板分离编译
    • 4.1 什么是分离编译
    • 4.2 模板的分离编译
  • 5. 缺省值与返回值
  • 6. 总结

1. 模板

首先模板分为函数模板和类模板

想到模板,就会联想到泛型编程

泛型编程:编写与类型无关的通用代码,是代码复用的一种手段。模板是泛型编程的基础。

网图:

在之前,我们已经知道了函数重载

还是那一个例子 Swap函数交换 int double char

哪怕是函数重载,我们也要写三个,但是如果有了模板,我们只需要:

告诉编译器一个模板,让编译器根据不同的类型利用该模板来生成代码

2. 函数模板

2.1 函数模板概念

函数模板代表了一个函数家族,该函数模板与类型无关,在使用时被参数化,根据实参类型产生 函数的特定类型版本。(上面的图就是一个函数模板的例子)

2.2 函数模板格式

template<typename T1, typename T2,......,typename Tn>

返回值类型 函数名 ( 参数列表 ){}

template<typename T>
void Swap( T& left,  T& right)
{
    T temp = left;
    left = right;
    right = temp;
}

注意: typename 是 用来定义模板参数 关键字 , 也可以使用 class( 切记:不能使用 struct 代替 class)

2.3 函数模板原理

函数模板是一个蓝图,它本身并不是函数,是编译器用使用方式产生特定具体类型函数的模具。 所以其实模板就是将本来应该我们做的重复的事情交给了编译器。 简单说就是本来我们应该多去写的Swap的重复工作去给编译器做了 网图:

在编译器编译阶段 ,对于模板函数的使用, 编译器需要根据传入的实参类型来推演生成对应类型 的函数 以供调用。比如: 当用 double 类型使用函数模板时,编译器通过对实参类型的推演,将 T 确定为 double 类型,然后产生一份专门处理 double 类型的代码 ,对于字符类型也是如此。

2.4 函数模板的实例化

用不同类型的参数使用函数模板时 ,称为函数模板的 实例化 。模板参数实例化分为: 隐式实例化 和显式实例化 。

1. 隐式实例化:让编译器根据实参推演模板参数的实际类型

2. 显式实例化:在函数名后的 <> 中指定模板参数的实际类型

2.5 模板参数的匹配原则

1. 一个非模板函数可以和一个同名的函数模板同时存在,而且该函数模板还可以被实例化为这 个非模板函数

就比如一个模板的Add和一个自己实现的Add可以一起存在

然后:

void Test ()
{
      Add ( 1 , 2 );       // 与非模板函数匹配,编译器不需要特化
      Add < int > ( 1 , 2 );   // 调用编译器特化的 Add 版本
}

2. 对于非模板函数和同名函数模板,如果其他条件都相同,在调动时会优先调用非模板函数而 不会从该模板产生出一个实例。如果模板可以产生一个具有更好匹配的函数, 那么将选择模板。

简单说会先找自己实现的有没有,没有就去看模板能不能实例化一个。

3. 模板函数不允许自动类型转换,但普通函数可以进行自动类型转换

2.6声明定义分离

也可以声明定义分离

不同的是模板参数声明定义都要给

3. 类模板

3.1 类模板格式

template<class T1, class T2, ..., class Tn>
class 类模板名
{
    // 类内成员定义
};

这里就习惯用上class,上面的函数模板是typename

3.2 类模板的实例化

类模板实例化与函数模板实例化不同, 类模板实例化需要在类模板名字后跟 <> ,然后将实例化的 类型放在 <> 中即可,类模板名字不是真正的类,而实例化的结果才是真正的类 。

虽然有警告,但是为了测试,问题不大。我们可以发现这里是创建了两个对象的,因为他们在各自的年龄和身高打印都是有所区别的(有无小数)

在这里 Student 这个类是一个模板,我们用这个模板创建了两个对象 分别是张三和李四

注意:Student 不是具体的类,是编译器根据被实例化的类型生成具体类的模具 PS:上面是用的Init,习惯还没改过来,大家还是用构造函数比较好

3.3 类模板中函数放在类外进行定义时

需要加模板参数列表

4. 模板分离编译

4.1 什么是分离编译

一个程序(项目)由若干个源文件共同实现,而每个源文件单独编译生成目标文件,最后将所有目标文件链接起来形成单一的可执行文件的过程称为分离编译模式。

4.2 模板的分离编译

假如有以下场景,模板的声明与定义分离开,在头文件中进行声明,源文件中完成定义:

// a.h
template<class T>
T Add(const T& left, const T& right);
// a.cpp
template<class T>
T Add(const T& left, const T& right)
{
    return left + right;
}
// main.cpp
#include"a.h"
int main()
{
    Add(1, 2);
    Add(1.0, 2.0);
    return 0;
}

我们开始运行

问题:会出现链接错误。

原因:首先程序运行是要预处理,编译汇编和链接。对于头文件的内容,a.cpp .i .s .o模板都是空的,因为编译器下不了手,不知道T是啥。(模板是在编译阶段处理,不是预处理)

main.cpp 里面因为只有声明,所以call是不知道地址的

然后链接的时候,因为a.cpp是没有生成对应的函数的(因为之前T不知道),所以链接的时候会发生链接错误。

简单说就是编译的时候经过模板的定义了但是因为T不知道所以不会生成对应的汇编代码,导致最后main.cpp里面要调用的时候并没有生成对应的函数所以会出现链接错误。

解决:

  • 放在一个名为 .hpp 的文件,也是就是这个文件是.h和.cpp的合体,寓意更好。直接.h也可以哈。(推荐)
  • 对于上面的原因对症下药,因为只有声明没有生成对应的定义,所以我们直接在 a.cpp 文件 显示实例化指定在定义的下面加上:
template
int Add<int>(int& left, int& right);
template
double Add<double>(double& left, double& right);

为什么:

但是为什么放在一起就没有链接错误了?

因为声明和定义放在一起,调用函数的时候直接实例化call地址去了,所以不报错并不是因为链接能找到,而是根本没有去找,直接call地址了。

5. 缺省值与返回值

也可以有缺省值(半/全),但是必须是从右往左缺省(类比函数),因为传参是从左往右传的

也可以模板做返回值

6. 总结

优点:

1. 模板复用了代码,节省资源,更快的迭代开发, C++ 的标准模板库 (STL) 因此而产生

2. 增强了代码的灵活性

缺陷:

1. 模板会导致代码膨胀问题,也会导致编译时间变长

2. 出现模板编译错误时,错误信息非常凌乱,不易定位错误

到此这篇关于C++模板Template详解及其作用介绍的文章就介绍到这了,更多相关C++模板内容请搜索我们以前的文章或继续浏览下面的相关文章希望大家以后多多支持我们!

(0)

相关推荐

  • C++模板全方位深入解读

    目录 1.泛型编程 2.函数模板 概念 函数模板的格式 函数模板的原理 函数模板的实例化 隐式实例化 显式实例化 模板参数的匹配原则 3.类模板 (1) 类模板的定义格式 (2) 类模板的实例化 4.非类型模板参数 5.模板特化 (1)函数模板的特化 (2)类模板的特化 全特化 偏特化 6.模板的分离编译 问题分析 1.泛型编程 如何实现一个通用的交换函数? 这点函数重载可以做到,比如一下Swap函数的重载,分别重载了俩种不同参数类型的Swap void Swap(int& x, int&

  • C++ 深入浅出探索模板

    目录 非类型模板参数 模板特化 函数模板特化 类模板特化 全特化 偏特化 模板分离编译 模板的分离编译 解决方法 总结 非类型模板参数 模板参数分类类型形参与非类型形参. 类型形参:出现在模板参数列表中,跟在class或者typename之类的参数类型名称. 非类型形参,就是用一个常量作为类(函数)模板的一个参数,在类(函数)模板中可将该参数当成常量来使用. 注意: 浮点数,类对象以及字符串是不允许作为非类型模板的. 非类型的模板参数必须在编译期就能确认结果. 模板特化 有时候,编译默认函数模板

  • c++分离讲解模板的概念与使用

    目录 泛类编程 函数模板 函数模板的概念 函数模板的使用 函数模板的实例化 函数模板的匹配原则 类模板 类模板的定义格式 类模板的实例化 泛类编程 学习模板,首先我们需要了解一下什么是泛类编程 #include<iostream> using namespace std; int add(int a, int b) { return a + b; } double add(double a, double b) //这两个add构成了函数重载 { return a + b; } int mai

  • 如何C++使用模板特化功能

    目录 前言: 1.函数模板的特化 2.类模板的特化 前言: 通过定义模板,使得函数或者类不依赖于特定的类型,这样大幅提升了代码的复用性. 然而,不管是类模板还是函数模板,对所有的类型都是采用相同的处理方式(同一份代码).为此,C++提出了“模板特化的概念”,对特定类型提供模板的改造. 比如,对于函数模板来说,可以通过特化指定特定的类型,针对此特定类型对函数体内容进行重写,使得函数对特定类型实现特定功能. 注意: 按照语法,对函数模板和类模板进行特化后,就变为普通函数和普通的类,而不再是模板. 1

  • C++超详细讲解模板的使用

    目录 一.函数模板 1.1函数模板概念 1.2 函数模板格式 1.3 函数模板的原理 1.4 函数模板的实例化 二.类模板 2.1 类模板的定义格式 2.2类模板的实例化 总结 一.函数模板 1.1函数模板概念 函数模板代表了一个函数家族,该函数模板与类型无关,在使用时被参数化,根据实参类型产生函数的特定类型版本. 1.2 函数模板格式 template<typename T1, typename T2,…,typename Tn> 返回值类型 函数名(参数列表){} template<

  • C++11中模板隐式实例化与显式实例化的定义详解分析

    目录 1. 隐式实例化 2. 显式实例化声明与定义 3. 显式实例化的用途 1. 隐式实例化 在代码中实际使用模板类构造对象或者调用模板函数时,编译器会根据调用者传给模板的实参进行模板类型推导然后对模板进行实例化,此过程中的实例化即是隐式实例化. template<typename T> T add(T t1, T2) { return t1 + t2; } template<typename T> class Dylan { public: T m_data; }; int ma

  • C++可变参数模板的展开方式

    文章目录 前言可变参数模板的定义参数包的展开递归函数方式展开逗号表达式展开enable_if方式展开折叠表达式展开(c++17) 总结 前言 可变参数模板(variadic templates)是C++11新增的强大的特性之一,它对模板参数进行了高度泛化,能表示0到任意个数.任意类型的参数.相比C++98/03这些类模版和函数模版中只能含固定数量模版参数的“老古董”,可变模版参数无疑是一个巨大的进步. 如果是刚接触可变参数模板可能会觉得比较抽象,使用起来会不太顺手,使用可变参数模板时通常离不开模

  • c++模板自定义数组

    目录 1.自定义数组.hpp--文件 2.测试文件 前言: 制造通用模板,创建自定义的数组, 一个数组,里面有这么几个属性,数组容量,数组元素个数,数组本身内存地址,这几个数据都是定义私有类型,提供有参构造,让用户可以构造出这个数组对象.下面是有参构造和拷贝构造和析构函数还有operator=重载的代码 在前面类模板中成员函数创建有这个主意问题,最好的办法就是把类模板写在一个hpp的文件中,不要拆开写成多个文件 1.自定义数组.hpp--文件 #pragma once #include<iost

  • C++将模板实现放入头文件原理解析

    目录 写在前面 例子 原因 分析 解决方案 方案一 方案二 参考 写在后面 写在前面 本文通过实例分析与讲解,解释了为什么C++一般将模板实现放在头文件中.这主要与C/C++的编译机制以及C++模板的实现原理相关,详情见正文.同时,本文给出了不将模板实现放在头文件中的解决方案. 例子 现有如下3个文件: // add.h template <typename T> T Add(const T &a, const T &b); // add.cpp #include "

  • C++中模板(Template)详解及其作用介绍

    目录 概述 函数模板 类模板 模板类外定义成员函数 类库模板 抽象和实例 概述 模板可以帮助我们提高代码的可用性, 可以帮助我们减少开发的代码量和工作量. 函数模板 函数模板 (Function Template) 是一个对函数功能框架的描述. 在具体执行时, 我们可以根据传递的实际参数决定其功能. 例如: int max(int a, int b, int c){ a = a > b ? a:b; a = a > c ? a:c; return a; } long max(long a, l

  • C++模板Template详解及其作用介绍

    目录 1. 模板 2. 函数模板 2.1 函数模板概念 2.2 函数模板格式 2.3 函数模板原理 2.4 函数模板的实例化 2.5 模板参数的匹配原则 2.6声明定义分离 3. 类模板 3.1 类模板格式 3.2 类模板的实例化 3.3 类模板中函数放在类外进行定义时 4. 模板分离编译 4.1 什么是分离编译 4.2 模板的分离编译 5. 缺省值与返回值 6. 总结 1. 模板 首先模板分为函数模板和类模板 想到模板,就会联想到泛型编程 泛型编程:编写与类型无关的通用代码,是代码复用的一种手

  • C/C++中异常处理详解及其作用介绍

    目录 概述 异常处理 异常处理机制 函数声明指定异常 练习 案例一 案例二 概述 作为一名专业写 Bug, 编程一天改 bug 一周的程序媛. 学会异常处理是非常重要的. 我们不仅要考虑没有错误的理想情况, 更要考虑存在错误时的情况. Debug 可以帮助我们尽快发现错误, 消除错误. 错误类别: 语法错误 运行错误 逻辑错误 异常处理 设计程序时, 事先分析程序运行时可能出现的各种意外情况, 定制出相应的处理方法. 异常处理指对运行时出现的差错以及其他例外情况的处理. 没有异常处理程序时, 运

  • C/C++中命名空间(namespace)详解及其作用介绍

    目录 概述 命名空间 命名空间的作用 自定义命名空间 命名空间成员的方法 案例 概述 命名空间 (namespace) 可以帮助我们区分不同库中相同名称的函数, 类, 变量等. 使用了命名空间即定义了上下文. 命名空间就是定义了一个范围. 命名空间 为了解决 C++ 标准库中的标识符与程序中的全局标识符之间以及不同库中的所有标识符之间的命名冲突. 标准 C++ 库的所有标识符都定义在一个名为 std 的命名空间中. 在程序中用到 C++ 标准库时, 使用 std 作为限定. 我们在写 "Hell

  • Maven继承与聚合详解及作用介绍

    目录 一.继承 引言 1. 继承关系的实现 2. 依赖配置 二.聚合 引言 实现聚合 三.继承与聚合的合并 一.继承 引言 继承关系可以对不同模块的依赖版本做统一管理,因为子模块中的依赖基本都继承于父模块,父模块中指定哪个版本,子模块就继承哪个版本,可以有效避免不同模块可能采用不同版本的依赖时产生的冲突 1. 继承关系的实现 (1)parent 模块设置 parent 模块即父模块,由于父模块只是为了给子模块提供依赖,所以父模块中只需要一个 pom.xml 文件即可.父模块的打包方式必须设置为

  • C/C++ 中memset() 函数详解及其作用介绍

    memset 函数是内存赋值函数,用来给某一块内存空间进行赋值的: 包含在<string.h>头文件中,可以用它对一片内存空间逐字节进行初始化: 原型为 : void *memset(void *s, int v, size_t n); 这里s可以是数组名,也可以是指向某一内在空间的指针: v为要填充的值: n为要填充的字节数: 例子: struct data { char num[100]; char name[100]; int n; }; struct data a, b[10]; me

  • C/C++中字符串流详解及其作用介绍

    目录 概述 字符串流 理解字符串流 输出字符串对象 输入字符串流对象 输入输出字符串流对象 案例一 案例二 字符数组 vs 文件 总结 概述 文件流类和字符串流类都是 ostream, istream 和 iostream 类的派生类, 因此对它们的操作方法是基本相同的. 字符串流 文件流 字符串流 概念 文件流是以外存文件为输入输出对象的数据流 字符串流也 称为内存流, 以内存中用户定义的字符数组 (字符串) 为输入输出的对象 相关流类 ifstream, ofstream 和 fstream

  • C/C++中栈(stack)&堆(heap)详解及其作用介绍

    目录 概述 程序运行中的栈和堆 堆和栈的差异 申请方式和回收方式 申请后系统的响应 申请效率比较 申请大小的限制 堆和栈中的存储内容 概述 栈 (stack) 是为执行线程流出的内存空间. 堆 (head) 是为动态分配预留的空间. 程序运行中的栈和堆 我们以一段代码来举例: #include <iostream> using namespace std; int a = 0; // 全局初始化区 char *pt; // 全局未初始化 int main() { int b; // b在栈区

  • C/C++中数据类型转换详解及其作用介绍

    目录 概述 不同类型数据间的转换 隐式类型转换 强制类型转换 自己声明的类型转换 转换构造函数 类型转换函数 案例 应用 概述 在日常的开发中, 我们经常会用到数据类型转换, 所以我们要对数据类型转换有一定的了解. 不同类型数据间的转换 在 C++ 中, 某些标准类型的数据之间可以自动转换. 隐式类型转换 隐式类型转换: 由 C++ 编译系统自动完成的, 我们无需干预. 例如: int main() { int a = 6; a = a + 3.5; cout << a << en

  • C/C++中抽象类详解及其作用介绍

    目录 概述 抽象类 vs 具体类 案例 抽象类的作用 总结 概述 抽象类 (abstract class), 是一些不用来定义对象, 而只作为基类被继承的类. 由于抽象类常用作基类, 所以通常称为抽象基类 (abstract base class). 定义抽象类的唯一目的, 就是去建立派生类. 我们在抽象类基础上要定义出功能各异的派生类, 再用这些派生类去建立对象. 抽象类 vs 具体类 凡是包含纯虚函数的类都是抽象类. 纯虚函数不用实现, 故不能被调用, 抽象类无法建立对象. 抽象类的作用是作

随机推荐