Keras在mnist上的CNN实践,并且自定义loss函数曲线图操作

使用keras实现CNN,直接上代码:

from keras.datasets import mnist
from keras.models import Sequential
from keras.layers import Dense, Dropout, Activation, Flatten
from keras.layers import Convolution2D, MaxPooling2D
from keras.utils import np_utils
from keras import backend as K

class LossHistory(keras.callbacks.Callback):
    def on_train_begin(self, logs={}):
        self.losses = {'batch':[], 'epoch':[]}
        self.accuracy = {'batch':[], 'epoch':[]}
        self.val_loss = {'batch':[], 'epoch':[]}
        self.val_acc = {'batch':[], 'epoch':[]}

    def on_batch_end(self, batch, logs={}):
        self.losses['batch'].append(logs.get('loss'))
        self.accuracy['batch'].append(logs.get('acc'))
        self.val_loss['batch'].append(logs.get('val_loss'))
        self.val_acc['batch'].append(logs.get('val_acc'))

    def on_epoch_end(self, batch, logs={}):
        self.losses['epoch'].append(logs.get('loss'))
        self.accuracy['epoch'].append(logs.get('acc'))
        self.val_loss['epoch'].append(logs.get('val_loss'))
        self.val_acc['epoch'].append(logs.get('val_acc'))

    def loss_plot(self, loss_type):
        iters = range(len(self.losses[loss_type]))
        plt.figure()
        # acc
        plt.plot(iters, self.accuracy[loss_type], 'r', label='train acc')
        # loss
        plt.plot(iters, self.losses[loss_type], 'g', label='train loss')
        if loss_type == 'epoch':
            # val_acc
            plt.plot(iters, self.val_acc[loss_type], 'b', label='val acc')
            # val_loss
            plt.plot(iters, self.val_loss[loss_type], 'k', label='val loss')
        plt.grid(True)
        plt.xlabel(loss_type)
        plt.ylabel('acc-loss')
        plt.legend(loc="upper right")
        plt.show()

history = LossHistory()

batch_size = 128
nb_classes = 10
nb_epoch = 20
img_rows, img_cols = 28, 28
nb_filters = 32
pool_size = (2,2)
kernel_size = (3,3)
(X_train, y_train), (X_test, y_test) = mnist.load_data()
X_train = X_train.reshape(X_train.shape[0], img_rows, img_cols, 1)
X_test = X_test.reshape(X_test.shape[0], img_rows, img_cols, 1)
input_shape = (img_rows, img_cols, 1)

X_train = X_train.astype('float32')
X_test = X_test.astype('float32')
X_train /= 255
X_test /= 255
print('X_train shape:', X_train.shape)
print(X_train.shape[0], 'train samples')
print(X_test.shape[0], 'test samples')

Y_train = np_utils.to_categorical(y_train, nb_classes)
Y_test = np_utils.to_categorical(y_test, nb_classes)

model3 = Sequential()

model3.add(Convolution2D(nb_filters, kernel_size[0] ,kernel_size[1],
                        border_mode='valid',
                        input_shape=input_shape))
model3.add(Activation('relu'))

model3.add(Convolution2D(nb_filters, kernel_size[0], kernel_size[1]))
model3.add(Activation('relu'))

model3.add(MaxPooling2D(pool_size=pool_size))
model3.add(Dropout(0.25))

model3.add(Flatten())

model3.add(Dense(128))
model3.add(Activation('relu'))
model3.add(Dropout(0.5))

model3.add(Dense(nb_classes))
model3.add(Activation('softmax'))

model3.summary()

model3.compile(loss='categorical_crossentropy',
              optimizer='adadelta',
              metrics=['accuracy'])

model3.fit(X_train, Y_train, batch_size=batch_size, epochs=nb_epoch,
          verbose=1, validation_data=(X_test, Y_test),callbacks=[history])

score = model3.evaluate(X_test, Y_test, verbose=0)
print('Test score:', score[0])
print('Test accuracy:', score[1])

#acc-loss
history.loss_plot('epoch')

补充:使用keras全连接网络训练mnist手写数字识别并输出可视化训练过程以及预测结果

前言

mnist 数字识别问题的可以直接使用全连接实现但是效果并不像CNN卷积神经网络好。Keras是目前最为广泛的深度学习工具之一,底层可以支持Tensorflow、MXNet、CNTK、Theano

准备工作

TensorFlow版本:1.13.1

Keras版本:2.1.6

Numpy版本:1.18.0

matplotlib版本:2.2.2

导入所需的库

from keras.layers import Dense,Flatten,Dropout
from keras.datasets import mnist
from keras import Sequential
import matplotlib.pyplot as plt
import numpy as np

Dense输入层作为全连接,Flatten用于全连接扁平化操作(也就是将二维打成一维),Dropout避免过拟合。使用datasets中的mnist的数据集,Sequential用于构建模型,plt为可视化,np用于处理数据。

划分数据集

# 训练集       训练集标签       测试集      测试集标签
(train_image,train_label),(test_image,test_label) = mnist.load_data()
print('shape:',train_image.shape)   #查看训练集的shape
plt.imshow(train_image[0])    #查看第一张图片
print('label:',train_label[0])      #查看第一张图片对应的标签
plt.show()

输出shape以及标签label结果:

查看mnist数据集中第一张图片:

数据归一化

train_image = train_image.astype('float32')
test_image = test_image.astype('float32')
train_image /= 255.0
test_image /= 255.0

将数据归一化,以便于训练的时候更快的收敛。

模型构建

#初始化模型(模型的优化 ---> 增大网络容量,直到过拟合)
model = Sequential()
model.add(Flatten(input_shape=(28,28)))    #将二维扁平化为一维(60000,28,28)---> (60000,28*28)输入28*28个神经元
model.add(Dropout(0.1))
model.add(Dense(1024,activation='relu'))   #全连接层 输出64个神经元 ,kernel_regularizer=l2(0.0003)
model.add(Dropout(0.1))
model.add(Dense(512,activation='relu'))    #全连接层
model.add(Dropout(0.1))
model.add(Dense(256,activation='relu'))    #全连接层
model.add(Dropout(0.1))
model.add(Dense(10,activation='softmax'))  #输出层,10个类别,用softmax分类

每层使用一次Dropout防止过拟合,激活函数使用relu,最后一层Dense神经元设置为10,使用softmax作为激活函数,因为只有0-9个数字。如果是二分类问题就使用sigmod函数来处理。

编译模型

#编译模型
model.compile(
    optimizer='adam',      #优化器使用默认adam
    loss='sparse_categorical_crossentropy', #损失函数使用sparse_categorical_crossentropy
    metrics=['acc']       #评价指标
)

sparse_categorical_crossentropy与categorical_crossentropy的区别:

sparse_categorical_crossentropy要求target为非One-hot编码,函数内部进行One-hot编码实现。

categorical_crossentropy要求target为One-hot编码。

One-hot格式如: [0,0,0,0,0,1,0,0,0,0] = 5

训练模型

#训练模型
history = model.fit(
    x=train_image,                          #训练的图片
    y=train_label,                          #训练的标签
    epochs=10,                              #迭代10次
    batch_size=512,                         #划分批次
    validation_data=(test_image,test_label) #验证集
)

迭代10次后的结果:

绘制loss、acc图

#绘制loss acc图
plt.figure()
plt.plot(history.history['acc'],label='training acc')
plt.plot(history.history['val_acc'],label='val acc')
plt.title('model acc')
plt.ylabel('acc')
plt.xlabel('epoch')
plt.legend(loc='lower right')
plt.figure()
plt.plot(history.history['loss'],label='training loss')
plt.plot(history.history['val_loss'],label='val loss')
plt.title('model loss')
plt.ylabel('loss')
plt.xlabel('epoch')
plt.legend(loc='upper right')
plt.show()

绘制出的loss变化图:

绘制出的acc变化图:

预测结果

print("前十个图片对应的标签: ",test_label[:10]) #前十个图片对应的标签
print("取前十张图片测试集预测:",np.argmax(model.predict(test_image[:10]),axis=1)) #取前十张图片测试集预测

打印的结果:

可看到在第9个数字预测错了,标签为5的,预测成了6,为了避免这种问题可以适当的加深网络结构,或使用CNN模型。

保存模型

model.save('./mnist_model.h5')

完整代码

from keras.layers import Dense,Flatten,Dropout
from keras.datasets import mnist
from keras import Sequential
import matplotlib.pyplot as plt
import numpy as np
# 训练集       训练集标签       测试集      测试集标签
(train_image,train_label),(test_image,test_label) = mnist.load_data()
# print('shape:',train_image.shape)   #查看训练集的shape
# plt.imshow(train_image[0]) #查看第一张图片
# print('label:',train_label[0])      #查看第一张图片对应的标签
# plt.show()
#归一化(收敛)
train_image = train_image.astype('float32')
test_image = test_image.astype('float32')
train_image /= 255.0
test_image /= 255.0
#初始化模型(模型的优化 ---> 增大网络容量,直到过拟合)
model = Sequential()
model.add(Flatten(input_shape=(28,28)))   #将二维扁平化为一维(60000,28,28)---> (60000,28*28)输入28*28个神经元
model.add(Dropout(0.1))
model.add(Dense(1024,activation='relu'))    #全连接层 输出64个神经元 ,kernel_regularizer=l2(0.0003)
model.add(Dropout(0.1))
model.add(Dense(512,activation='relu'))    #全连接层
model.add(Dropout(0.1))
model.add(Dense(256,activation='relu'))    #全连接层
model.add(Dropout(0.1))
model.add(Dense(10,activation='softmax')) #输出层,10个类别,用softmax分类
#编译模型
model.compile(
    optimizer='adam',
    loss='sparse_categorical_crossentropy',
    metrics=['acc']
)
#训练模型
history = model.fit(
    x=train_image,                          #训练的图片
    y=train_label,                          #训练的标签
    epochs=10,                              #迭代10次
    batch_size=512,                         #划分批次
    validation_data=(test_image,test_label) #验证集
)
#绘制loss acc 图
plt.figure()
plt.plot(history.history['acc'],label='training acc')
plt.plot(history.history['val_acc'],label='val acc')
plt.title('model acc')
plt.ylabel('acc')
plt.xlabel('epoch')
plt.legend(loc='lower right')
plt.figure()
plt.plot(history.history['loss'],label='training loss')
plt.plot(history.history['val_loss'],label='val loss')
plt.title('model loss')
plt.ylabel('loss')
plt.xlabel('epoch')
plt.legend(loc='upper right')
plt.show()
print("前十个图片对应的标签: ",test_label[:10]) #前十个图片对应的标签
print("取前十张图片测试集预测:",np.argmax(model.predict(test_image[:10]),axis=1)) #取前十张图片测试集预测
#优化前(一个全连接层(隐藏层))
#- 1s 12us/step - loss: 1.8765 - acc: 0.8825
# [7 2 1 0 4 1 4 3 5 4]
# [7 2 1 0 4 1 4 9 5 9]
#优化后(三个全连接层(隐藏层))
#- 1s 14us/step - loss: 0.0320 - acc: 0.9926 - val_loss: 0.2530 - val_acc: 0.9655
# [7 2 1 0 4 1 4 9 5 9]
# [7 2 1 0 4 1 4 9 5 9]
model.save('./model_nameALL.h5')

总结

使用全连接层训练得到的最后结果train_loss: 0.0242 - train_acc: 0.9918 - val_loss: 0.0560 - val_acc: 0.9826,由loss acc可视化图可以看出训练有着明显的效果。

以上为个人经验,希望能给大家一个参考,也希望大家多多支持我们。

(0)

相关推荐

  • keras自定义回调函数查看训练的loss和accuracy方式

    前言: keras是一个十分便捷的开发框架,为了更好的追踪网络训练过程中的损失函数loss和准确率accuracy,我们有几种处理方式,第一种是直接通过 history=model.fit(),来返回一个history对象,通过这个对象可以访问到训练过程训练集的loss和accuracy以及验证集的loss和accuracy. 第二种方式就是通过自定义一个回调函数Call backs,来实现这一功能,本文主要讲解第二种方式. 一.如何构建回调函数Callbacks 本文所针对的例子是卷积神经网络

  • keras绘制acc和loss曲线图实例

    我就废话不多说了,大家还是直接看代码吧! #加载keras模块 from __future__ import print_function import numpy as np np.random.seed(1337) # for reproducibility import keras from keras.datasets import mnist from keras.models import Sequential from keras.layers.core import Dense,

  • keras 自定义loss model.add_loss的使用详解

    一点见解,不断学习,欢迎指正 1.自定义loss层作为网络一层加进model,同时该loss的输出作为网络优化的目标函数 from keras.models import Model import keras.layers as KL import keras.backend as K import numpy as np from keras.utils.vis_utils import plot_model x_train=np.random.normal(1,1,(100,784)) x_

  • Keras之自定义损失(loss)函数用法说明

    在Keras中可以自定义损失函数,在自定义损失函数的过程中需要注意的一点是,损失函数的参数形式,这一点在Keras中是固定的,须如下形式: def my_loss(y_true, y_pred): # y_true: True labels. TensorFlow/Theano tensor # y_pred: Predictions. TensorFlow/Theano tensor of the same shape as y_true . . . return scalar #返回一个标量

  • Keras在mnist上的CNN实践,并且自定义loss函数曲线图操作

    使用keras实现CNN,直接上代码: from keras.datasets import mnist from keras.models import Sequential from keras.layers import Dense, Dropout, Activation, Flatten from keras.layers import Convolution2D, MaxPooling2D from keras.utils import np_utils from keras imp

  • keras做CNN的训练误差loss的下降操作

    采用二值判断如果确认是噪声,用该点上面一个灰度进行替换. 噪声点处理:对原点周围的八个点进行扫描,比较.当该点像素值与周围8个点的值小于N时,此点为噪点 . 处理后的文件大小只有原文件小的三分之一,前后的图片内容肉眼几乎无法察觉. 但是这样处理后图片放入CNN中在其他条件不变的情况下,模型loss无法下降,二分类图片,loss一直在8-9之间.准确率维持在0.5,同时,测试集的训练误差持续下降,但是准确率也在0.5徘徊.大概真是需要误差,让优化方法从局部最优跳出来. 使用的activation

  • Keras使用ImageNet上预训练的模型方式

    我就废话不多说了,大家还是直接看代码吧! import keras import numpy as np from keras.applications import vgg16, inception_v3, resnet50, mobilenet #Load the VGG model vgg_model = vgg16.VGG16(weights='imagenet') #Load the Inception_V3 model inception_model = inception_v3.I

  • 使用keras框架cnn+ctc_loss识别不定长字符图片操作

    我就废话不多说了,大家还是直接看代码吧~ # -*- coding: utf-8 -*- #keras==2.0.5 #tensorflow==1.1.0 import os,sys,string import sys import logging import multiprocessing import time import json import cv2 import numpy as np from sklearn.model_selection import train_test_s

  • java web中的servlet3 upload上传文件实践

    Servlet 3.0之前的版本中,文件上传是个挺让人头疼的问题,虽然有第三方框架来实现,但使用也还是比较麻烦,在Servlet 3.0中,这些问题将不复存在,Servlet 3.0对文件上传提供了直接支持,配合Servlet 3.0中基于Annotations的配置,大大简化上传件的操作. 一.javax.servlet.http中Part接口 public interface Part 要上传文件必须使用multipart/form-data作为request body. 版本: Servl

  • keras 自定义loss损失函数,sample在loss上的加权和metric详解

    首先辨析一下概念: 1. loss是整体网络进行优化的目标, 是需要参与到优化运算,更新权值W的过程的 2. metric只是作为评价网络表现的一种"指标", 比如accuracy,是为了直观地了解算法的效果,充当view的作用,并不参与到优化过程 在keras中实现自定义loss, 可以有两种方式,一种自定义 loss function, 例如: # 方式一 def vae_loss(x, x_decoded_mean): xent_loss = objectives.binary_

  • keras训练曲线,混淆矩阵,CNN层输出可视化实例

    训练曲线 def show_train_history(train_history, train_metrics, validation_metrics): plt.plot(train_history.history[train_metrics]) plt.plot(train_history.history[validation_metrics]) plt.title('Train History') plt.ylabel(train_metrics) plt.xlabel('Epoch')

  • Springboot如何连接远程服务器上的数据库实践

    Springboot项目如何连接远程服务器上的数据库 没有数据库服务器,就在自己的服务器上装了mysql,希望将数据库的mysql开放给外部用户,设置如下. 1.在自己的服务器放开3306的端口,当然也可以限制ip的来源,限制那些ip才能够访问. 2.在远程数据库创建一个以供开放的角色,这个角色你可以根据不同的需求场景,开放某一个数据库,授予不同的权限等.以下我创建了一个用户Akio,允许来自任何ip的用户都可借此登录.当然你也可以根据语法创建更多类型更多场景的用户. 3.授予权限,ALL PR

  • openGauss数据库在CentOS上的安装实践记录

    目录 1. 安装前准备 2. python3准备 2.1 在线版安装 2.2 离线版安装 3. 修改操作系统配置 4. 配置文件cluster_config.xml准备 5. 安装及验证 6. 可能遇到的问题 这是一篇基于华为云ECS+CentOS 7的openGauss数据库安装实践. 1. 安装前准备 安装数据库前先要有已安装centOS 7.6的服务器+数据库安装包. 首先找小伙伴申请了华为云ECS服务器安装好了OS,这里使用的是x86_64+centos. 华为云服务器现在可是很划算呢,

随机推荐