使用C语言的fork()函数在Linux中创建进程的实例讲解

在Linux中创建一个新进程的唯一方法是使用fork()函数。fork()函数是Linux中一个非常重要的函数,和以往遇到的函数有一些区别,因为fork()函数看起来执行一次却返回两个值。

fork()函数用于从已存在的进程中创建一个新进程。新进程称为子进程,而园进程称为父进程。使用fork()函数得到的子进程是父进程的一个复制品,它从父进程处继承了整个进程的地址空间,包括进程的上下文、代码段、进程堆栈、内存信息、打开的文件描述符、符号控制设定、进程优先级、进程组号、当前工作目录、根目录、资源限制和控制终端等,而子进程所独有的只有它的进程号、资源使用和计时器等。

因为子进程几乎是父进程的完全复制,所以父子两进程会运行同一个程序。这就需要用一种方式来区分它们,并使它们照此运行,否则,这两个进程不可能做不同的事。实际上是在父进程中执行fork()函数时,父进程会复制一个子进程,而且父子进程的代码从fork()函数的返回开始分别在两个地址空间中同时运行,从而使两个进程分别获得所属fork()函数的返回值,其中在父进程中的返回值是子进程的进程号,而在子进程中返回0。因此,可以通过返回值来判断该进程的父进程还是子进程。

同时可以看出,使用fork()函数的代价是很大的,它复制了父进程中的代码段、数据段和堆栈段里的大部分内容,使得fork()函数的系统开销比较大,而且执行速度也不是很快。

fork()函数语法

fork()函数出错可能有两种原因:
1、当前的进程数已经达到了系统规定的上限,这时errno的值被设置为EAGAIN
2、系统内存不足,这时errno的值被设置为ENOMEM

示例

下面的是csapp.h头文件,后面的讨论中均只用该头文件来完成程序的编写。

/* $begin csapp.h */
#ifndef __CSAPP_H__
#define __CSAPP_H__

#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
#include <string.h>
#include <ctype.h>
#include <setjmp.h>
#include <signal.h>
#include <sys/time.h>
#include <sys/types.h>
#include <sys/wait.h>
#include <sys/stat.h>
#include <fcntl.h>
#include <sys/mman.h>
#include <errno.h>
#include <math.h>
#include <pthread.h>
#include <semaphore.h>
#include <sys/socket.h>
#include <netdb.h>
#include <netinet/in.h>
#include <arpa/inet.h>

/* Default file permissions are DEF_MODE & ~DEF_UMASK */
/* $begin createmasks */
#define DEF_MODE  S_IRUSR|S_IWUSR|S_IRGRP|S_IWGRP|S_IROTH|S_IWOTH
#define DEF_UMASK S_IWGRP|S_IWOTH
/* $end createmasks */

/* Simplifies calls to bind(), connect(), and accept() */
/* $begin sockaddrdef */
typedef struct sockaddr SA;
/* $end sockaddrdef */

/* Persistent state for the robust I/O (Rio) package */
/* $begin rio_t */
#define RIO_BUFSIZE 8192
typedef struct {
  int rio_fd;        /* Descriptor for this internal buf */
  int rio_cnt;        /* Unread bytes in internal buf */
  char *rio_bufptr;     /* Next unread byte in internal buf */
  char rio_buf[RIO_BUFSIZE]; /* Internal buffer */
} rio_t;
/* $end rio_t */

/* External variables */
extern int h_errno;  /* Defined by BIND for DNS errors */
extern char **environ; /* Defined by libc */

/* Misc constants */
#define  MAXLINE   8192 /* Max text line length */
#define MAXBUF  8192 /* Max I/O buffer size */
#define LISTENQ 1024 /* Second argument to listen() */

/* Our own error-handling functions */
void unix_error(char *msg);
void posix_error(int code, char *msg);
void dns_error(char *msg);
void app_error(char *msg);

/* Process control wrappers */
pid_t Fork(void);
void Execve(const char *filename, char *const argv[], char *const envp[]);
pid_t Wait(int *status);
pid_t Waitpid(pid_t pid, int *iptr, int options);
void Kill(pid_t pid, int signum);
unsigned int Sleep(unsigned int secs);
void Pause(void);
unsigned int Alarm(unsigned int seconds);
void Setpgid(pid_t pid, pid_t pgid);
pid_t Getpgrp();

/* Signal wrappers */
typedef void handler_t(int);
handler_t *Signal(int signum, handler_t *handler);
void Sigprocmask(int how, const sigset_t *set, sigset_t *oldset);
void Sigemptyset(sigset_t *set);
void Sigfillset(sigset_t *set);
void Sigaddset(sigset_t *set, int signum);
void Sigdelset(sigset_t *set, int signum);
int Sigismember(const sigset_t *set, int signum);

/* Unix I/O wrappers */
int Open(const char *pathname, int flags, mode_t mode);
ssize_t Read(int fd, void *buf, size_t count);
ssize_t Write(int fd, const void *buf, size_t count);
off_t Lseek(int fildes, off_t offset, int whence);
void Close(int fd);
int Select(int n, fd_set *readfds, fd_set *writefds, fd_set *exceptfds,
    struct timeval *timeout);
int Dup2(int fd1, int fd2);
void Stat(const char *filename, struct stat *buf);
void Fstat(int fd, struct stat *buf) ;

/* Memory mapping wrappers */
void *Mmap(void *addr, size_t len, int prot, int flags, int fd, off_t offset);
void Munmap(void *start, size_t length);

/* Standard I/O wrappers */
void Fclose(FILE *fp);
FILE *Fdopen(int fd, const char *type);
char *Fgets(char *ptr, int n, FILE *stream);
FILE *Fopen(const char *filename, const char *mode);
void Fputs(const char *ptr, FILE *stream);
size_t Fread(void *ptr, size_t size, size_t nmemb, FILE *stream);
void Fwrite(const void *ptr, size_t size, size_t nmemb, FILE *stream);

/* Dynamic storage allocation wrappers */
void *Malloc(size_t size);
void *Realloc(void *ptr, size_t size);
void *Calloc(size_t nmemb, size_t size);
void Free(void *ptr);

/* Sockets interface wrappers */
int Socket(int domain, int type, int protocol);
void Setsockopt(int s, int level, int optname, const void *optval, int optlen);
void Bind(int sockfd, struct sockaddr *my_addr, int addrlen);
void Listen(int s, int backlog);
int Accept(int s, struct sockaddr *addr, socklen_t *addrlen);
void Connect(int sockfd, struct sockaddr *serv_addr, int addrlen);

/* DNS wrappers */
struct hostent *Gethostbyname(const char *name);
struct hostent *Gethostbyaddr(const char *addr, int len, int type);

/* Pthreads thread control wrappers */
void Pthread_create(pthread_t *tidp, pthread_attr_t *attrp,
      void * (*routine)(void *), void *argp);
void Pthread_join(pthread_t tid, void **thread_return);
void Pthread_cancel(pthread_t tid);
void Pthread_detach(pthread_t tid);
void Pthread_exit(void *retval);
pthread_t Pthread_self(void);
void Pthread_once(pthread_once_t *once_control, void (*init_function)());

/* POSIX semaphore wrappers */
void Sem_init(sem_t *sem, int pshared, unsigned int value);
void P(sem_t *sem);
void V(sem_t *sem);

/* Rio (Robust I/O) package */
ssize_t rio_readn(int fd, void *usrbuf, size_t n);
ssize_t rio_writen(int fd, void *usrbuf, size_t n);
void rio_readinitb(rio_t *rp, int fd);
ssize_t  rio_readnb(rio_t *rp, void *usrbuf, size_t n);
ssize_t  rio_readlineb(rio_t *rp, void *usrbuf, size_t maxlen);

/* Wrappers for Rio package */
ssize_t Rio_readn(int fd, void *usrbuf, size_t n);
void Rio_writen(int fd, void *usrbuf, size_t n);
void Rio_readinitb(rio_t *rp, int fd);
ssize_t Rio_readnb(rio_t *rp, void *usrbuf, size_t n);
ssize_t Rio_readlineb(rio_t *rp, void *usrbuf, size_t maxlen);

/* Client/server helper functions */
int open_clientfd(char *hostname, int portno);
int open_listenfd(int portno);

/* Wrappers for client/server helper functions */
int Open_clientfd(char *hostname, int port);
int Open_listenfd(int port); 

#endif /* __CSAPP_H__ */
/* $end csapp.h */

fork()函数示例一

#include "csapp.h"
int main()
{
 pid_t pid;
 int x=1;
 pid=fork();
 if(pid==0) {
  printf("child :x=%d\n",++x);
  exit(0);
 }
 printf("parent:x=%d\n",--x);
 exit(0);
}

例如上面的程序,由于fork()函数比较特殊,执行一次,返回两次。返回两次分别是在父进程和子进程中各返回一个值,在子进程中返回为0,在父进程中返回进程ID,一般为正整数即非零。这样就能根据返回值来确定其在哪个进程中了。如上面的程序,子进程中pid=0,所以执行if语句,子进程会共享父进程的文本/数据/bss段/堆以及用户栈,子进程随后正常终止并且返回码为0,因此子进程不执行后续的共享代码块,因此本程序的输出结果是

parent:x=0
child :x=2

fork()函数示例二

#include "csapp.h"

int main()
{
 if(fork()==0) {
  printf("a");
 }
 else {
  printf("b");
  waitpid(-1,NULL,0);
 }
 printf("c");
 exit(0);
}

此程序是用来检验子进程与父进程的关系。同样再次强调一遍,fork()函数用于新建子进程,子进程具有与父进程相同的用户级虚拟地址空间,包括文本/数据/bss段/堆/用户栈,子进程可以读写任意父进程打开的文件,它们的最大区别是它们有不同的PID。fork函数调用一次,返回两次,一次在父进程中,其返回子进程的PID;在子进程中,fork返回0,因为子进程的PID总是非零的,返回值就提供了一个明确的方法来辨别是在父进程中执行还是在子进程中执行。waitpid()函数是等待子进程终止,若无错误,则返回值为正数。因为在在子进程中,fork()返回0,因此先输出a,并且其共享父进程的代码段,故又输出c;而在父进程中,fork()返回值非零,所以执行else语句,故输出bc。因此本程序的输出结果为
acbc

fork()函数示例三

#include "csapp.h"
int main()
{
 int x=1;
 if(fork()==0)
  printf("printf1:x=%d\n",++x);
 printf("printf2:x=%d\n",--x);
 exit(0);
}

本程序再次演示子进程与父进程的区别。程序中,在子进程中,子进程共享数据x=1,并且fork()返回0,因此if语句被执行,输出printf1:x=2,接着共享后面一部分代码段,因此再输出printf2:x=1;而对于父进程,fork()返回非零,因此不会执行if语句段,而执行后面的代码,即输出printf2:x=0.因此本程序输出结果为(子进程与父进程顺序不唯一)

printf2:x=0
printf1:x=2
printf2:x=1

fork()函数示例四

#include "csapp.h"
#define N 3
int main()
{
 int status,i;
 pid_t pid; 

 for(i=0;i<N;i++)
  if((pid=fork())==0) //新建子进程
   exit(100+i); 

 while((pid=waitpid(-1,&status,0))>0) { //如果子进程是正常终止的,就返回进程的进程号PID
  if(WIFEXITED(status)) //返回退出状态
   printf("child %d terminated normally with exit status =%d\n",pid,WEXITSTATUS(status));
  else
   printf("child %d erminated abnormally\n",pid);
 }

 if(errno!=ECHILD)
  printf("waitpid error\n");
 exit(0);
}

本代码主要是测试进程的终止,即waitpid案例程序。定义生成两个进程,本例子是不按照特定顺序来回收僵死子进程,本程序返回结果为

child 28693 terminated normally with exit status =100
child 28694 terminated normally with exit status =101
child 28695 terminated normally with exit status =102

fork()函数示例五

#include "csapp.h"
#define N 2
int main()
{
 int status,i;
 pid_t pid[N],retpid;

 for(i=0;i<N;i++)
  if((pid[i]=fork())==0)
   exit(100+i);//退出并返回状态码
 i=0;
 while((retpid=waitpid(pid[i++],&status,0))>0) {
  if(WIFEXITED(status))
   printf("child %d terminated normally with exit status=%d\n",retpid,WEXITSTATUS(status));
  else
   printf("child %d terminated abnormally\n",retpid);
 }

 if(errno !=ECHILD)
  printf("waitpid error!");
 exit(0);
}

按照创建进程的顺序来回收这些僵死进程,注意程序中的pid[i++]是按序的标志,本程序运行结果为

child 29846 terminated normally with exit status=100
child 29847 terminated normally with exit status=101

fork()函数示例六

#include "csapp.h"

/*推测此程序会输出什么样的结果*/

int main()
{
 int status;
 pid_t pid;

 printf("Hello\n");
 pid=fork();
 printf("%d\n",!pid);
 if(pid!=0) {
  if(waitpid(-1,&status,0)>0) {
   if(WIFEXITED(status)!=0)
  printf("%d\n",WEXITSTATUS(status));
  }
 }
 printf("Bye\n");
 exit(2);
}

首先父进程会输出Hello,子进程新建成功,在子进程中,pid为0,输出1,并且子进程无法执行if语句,但是子进程仍然可以输出Bye,并且正常退出并返回状态码为2。而在父进程中,pid为非零的正数,因此先输出0,然后执行if语句,由于子进程已经正常退出,故输出状态码2,并且最后执行公共代码块,输出Bye并正常退出。因此,总共输出的结果如下所示:

Hello
0
1
Bye
2
Bye

当然,顺序不唯一,还有一种可能的结果是

Hello
1
Bye
0
2
Bye
(0)

相关推荐

  • Linux中fork()函数实例分析

    一.fork 入门知识 一个进程,包括代码.数据和分配给进程的资源.fork()函数通过系统调用创建一个与原来进程几乎完全相同的进程,也就是两个进程可以做完全相同的事,但如果初始参数或者传入的变量不同,两个进程也可以做不同的事. 一个进程调用fork()函数后,系统先给新的进程分配资源,例如存储数据和代码的空间.然后把原来的进程的所有值都复制到新的新进程中,只有少数值与原来的进程的值不同.相当于克隆了一个自己. 我们来看一个例子: /* * fork_test.c * version 1 * C

  • C语言的fork函数在Linux中的进程操作及相关面试题讲解

    fork的意义 下图为,C 程序的存储空间布局(典型) 1.一个现有进程可以调用 fork 函数创建一个新进程. 2.fork 函数被调用一次,但返回两次, 两次返回的唯一区别是子进程的返回值是 0, 而父进程的返回值是新子进程的 PID. 3.子进程和父进程继续执行 fork 调用之后的指令. 在上图的存储空间布局中,父子进程只共享正文段,其余的都各自有独立的副本 (通常使用 copy-on-write 的策略,速度比较快). fork 的两种用法 1.父子进程同时执行不同的代码段 典型应用:

  • Linux中使用C语言的fork()函数创建子进程的实例教程

    一.fork入门知识 一个进程,包括代码.数据和分配给进程的资源.fork()函数通过系统调用创建一个与原来进程几乎完全相同的进程,也就是两个进程可以做完全相同的事,但如果初始参数或者传入的变量不同,两个进程也可以做不同的事. 一个进程调用fork()函数后,系统先给新的进程分配资源,例如存储数据和代码的空间.然后把原来的进程的所有值都复制到新的新进程中,只有少数值与原来的进程的值不同.相当于克隆了一个自己.   我们来看一个例子: #include <unistd.h> #include &

  • Linux 中fork的执行的实例详解

    Linux 中fork的执行的实例详解 先看看一段fork的程序 int main() { pid_t pid; 语句 a; pid = fork(); 语句 b; } 1.当程序运行到 pid = fork()时,这个进程马上分裂(fork的中文意思)成两个进程,我们称为父进程和子进程,子进程是父进程的副本,副本的意思是子进程把父进程的数据空间,堆和栈都复制一遍给自己用,这要求在内存给子进程分配和父进程同样大的存储空间,这样,父,子进程拥有相同的数据,但不会共享存储空间,他们只是共享正文段.

  • 浅谈Linux环境下并发编程中C语言fork()函数的使用

    由fork创建的新进程被称为子进程(child process).fork函数被调用一次,但返回两次.子进程的返回值是0,而父进程的返回值则是新进程的进程ID.将子进程ID返回给父进程的理由是:因为一个进程的子进程可以有多个,并且没有一个函数使一个进程可以获得其所有子进程的进程ID.fork使子进程得到返回值0的理由是:一个进程只会有一个父进程,所以子进程总是可以调用getpid以获得其父进程的进程ID. 使fork失败的两个主要原因是:系统中已经有了太多的进程,或者该实际用户ID的进程总数超过

  • Linux系统中C语言编程创建函数fork()执行解析

    最近在看进程间的通信,看到了fork()函数,虽然以前用过,这次经过思考加深了理解.现总结如下: 1.函数本身 (1)头文件 #include<unistd.h> #include<sys/types.h> (2)函数原型 pid_t fork( void); (pid_t 是一个宏定义,其实质是int 被定义在#include<sys/types.h>中) 返回值: 若成功调用一次则返回两个值,子进程返回0,父进程返回子进程ID:否则,出错返回-1 (3)函数说明 一

  • 详解linux中fork、vfork、clone函数的区别

    在linux系统中,fork(),vfork()和clone函数都可以创建一个进程,但是它们的区别是什么呢???本文就这三者做一个较深入的分析!!! 1.fork() fork()函数的作用是创建一个新进程,由fork创建的进程称为子进程,fork函数调用一次返回两次,子进程返回值为0,父进程返回子进程的进程ID.我们知道,一个进程的地 址空间主要由代码段,数据段,堆和栈构成,那么p2就要复制相关的段到物理内存.原始的unix系统的实现的是一种傻 瓜式的进程创建,这些复制包括: (1) 为子进程

  • 简单掌握Linux系统中fork()函数创建子进程的用法

    fork()函数用于从已存在的进程中创建一个新进程.新进程称为子进程,而园进程称为父进程.使用fork()函数得到的子进程是父进程的一个复制品,它从父进程处继承了整个进程的地址空间,包括进程的上下文.代码段.进程堆栈.内存信息.打开的文件描述符.符号控制设定.进程优先级.进程组号.当前工作目录.根目录.资源限制和控制终端等,而子进程所独有的只有它的进程号.资源使用和计时器等. 因为子进程几乎是父进程的完全复制,所以父子两进程会运行同一个程序.这就需要用一种方式来区分它们,并使它们照此运行,否则,

  • Linux下C语言的fork()子进程函数用法及相关问题解析

    fork fork()函数是linux下的一个系统调用,它的作用是产生一个子进程,子进程是当前进程的一个副本,它跟父进程有一样的虚存内容,但也有一些不同点. 但是,值得注意的是,父进程调用fork()后,fork()返回的是生成的子进程(如果能顺利生成的话)的ID.子进程执行的起点也是代码中fork的位置,不同的是下面这段C语言代码展示了fork()函数的使用方法: // myfork.c #include <unistd.h> #include <stdio.h> int mai

  • Linux 编程之进程fork()详解及实例

    Linux fork()详解: 在开始之前,我们先来了解一些基本的概念: 1. 程序, 没有在运行的可执行文件 进程,  运行中的程序 2. 进程调度的方法: 按时间片轮转       先来先服务      短时间优先      按优先级别 3. 进程的状态: 就绪   ->>   运行  ->> 等待          运行 ->> 就绪 //时间片完了          等待 ->> 就绪 //等待的条件完成了 查看当前系统进程的状态 ps auxf s

随机推荐