Java中读写锁ReadWriteLock的原理与应用详解

目录
  • 什么是读写锁?
  • 为什么需要读写锁?
  • 读写锁的特点
  • 读写锁的使用场景
  • 读写锁的主要成员和结构图
  • 读写锁的实现原理
  • 读写锁总结

Java并发编程提供了读写锁,主要用于读多写少的场景,今天我就重点来讲解读写锁的底层实现原理

什么是读写锁?

读写锁并不是JAVA所特有的读写锁(Readers-Writer Lock)顾名思义是一把锁分为两部分:读锁和写锁,其中读锁允许多个线程同时获得,因为读操作本身是线程安全的,而写锁则是互斥锁,不允许多个线程同时获得写锁,并且写操作和读操作也是互斥的。

所谓的读写锁(Readers-Writer Lock),顾名思义就是将一个锁拆分为读锁和写锁两个锁。

其中读锁允许多个线程同时获得,而写锁则是互斥锁,不允许多个线程同时获得写锁,并且写操作和读操作也是互斥的。

为什么需要读写锁?

Synchronized 和 ReentrantLock 都是独占锁,即在同一时刻只有一个线程获取到锁。

然而在有些业务场景中,我们大多在读取数据,很少写入数据,这种情况下,如果仍使用独占锁,效率将及其低下。

针对这种情况,Java提供了读写锁——ReentrantReadWriteLock。

主要解决:对共享资源有读和写的操作,且写操作没有读操作那么频繁的场景。

读写锁的特点

  • 公平性:读写锁支持非公平和公平的锁获取方式,非公平锁的吞吐量优于公平锁的吞吐量,默认构造的是非公平锁
  • 可重入:在线程获取读锁之后能够再次获取读锁,但是不能获取写锁,而线程在获取写锁之后能够再次获取写锁,同时也能获取读锁
  • 锁降级:线程获取写锁之后获取读锁,再释放写锁,这样实现了写锁变为读锁,也叫锁降级

读写锁的使用场景

ReentrantReadWriteLock适合读多写少的场景:

读锁ReentrantReadWriteLock.ReadLock可以被多个线程同时持有, 所以并发能力很高。

写锁ReentrantReadWriteLock.WriteLock是独占锁, 在一个线程持有写锁时候, 其他线程都不能在抢占, 包含抢占读锁都会阻塞。

ReentrantReadWriteLock的使用场景总结:其实就是 读读并发、读写互斥、写写互斥而已,如果一个对象并发读的场景大于并发写的场景,那就可以使用 ReentrantReadWriteLock来达到保证线程安全的前提下提高并发效率。

读写锁的主要成员和结构图

1. ReentrantReadWriteLock的继承关系

public interface ReadWriteLock {
    /**
     * Returns the lock used for reading.
     *
     * @return the lock used for reading.
     */
    Lock readLock();
    /**
     * Returns the lock used for writing.
     *
     * @return the lock used for writing.
     */
    Lock writeLock();
}

读写锁 ReadWriteLock

读写锁维护了一对相关的锁,一个用于只读操作,一个用于写入操作。

只要没有写入,读取锁可以由多个读线程同时保持,写入锁是独占的。

2.ReentrantReadWriteLock的核心变量

ReentrantReadWriteLock类包含三个核心变量:

  • ReaderLock:读锁,实现了Lock接口
  • WriterLock:写锁,也实现了Lock接口
  • Sync:继承自AbstractQueuedSynchronize(AQS),可以为公平锁FairSync 或 非公平锁NonfairSync

3.ReentrantReadWriteLock的成员变量和构造函数

/** 内部提供的读锁 */

    private final ReentrantReadWriteLock.ReadLock readerLock;

    /** 内部提供的写锁 */
    private final ReentrantReadWriteLock.WriteLock writerLock;

    /** AQS来实现的同步器 */
    final Sync sync;

    /**
     * Creates a new {@code ReentrantReadWriteLock} with
     * 默认创建非公平的读写锁
     */
    public ReentrantReadWriteLock() {
        this(false);
    }

    /**
     * Creates a new {@code ReentrantReadWriteLock} with
     * the given fairness policy.
     *
     * @param fair {@code true} if this lock should use a fair ordering policy
     */
    public ReentrantReadWriteLock(boolean fair) {
        sync = fair ? new FairSync() : new NonfairSync();
        readerLock = new ReadLock(this);
        writerLock = new WriteLock(this);
    }

读写锁的实现原理

ReentrantReadWriteLock实现关键点,主要包括:

  • 读写状态的设计
  • 写锁的获取与释放
  • 读锁的获取与释放
  • 锁降级

1.读写状态的设计

之前谈ReentrantLock的时候,Sync类是继承于AQS,主要以int state为线程锁状态,0表示没有被线程占用,1表示已经有线程占用。

同样ReentrantReadWriteLock也是继承于AQS来实现同步,那int state怎样同时来区分读锁和写锁的?

如果在一个整型变量上维护多种状态,就一定需要“按位切割使用”这个变量,ReentrantReadWriteLock将int类型的state将变量切割成两部分:

  • 高16位记录读锁状态
  • 低16位记录写锁状态

abstract static class Sync extends AbstractQueuedSynchronizer {
    // 版本序列号
    private static final long serialVersionUID = 6317671515068378041L;
    // 高16位为读锁,低16位为写锁
    static final int SHARED_SHIFT   = 16;
    // 读锁单位
    static final int SHARED_UNIT    = (1 << SHARED_SHIFT);
    // 读锁最大数量
    static final int MAX_COUNT      = (1 << SHARED_SHIFT) - 1;
    // 写锁最大数量
    static final int EXCLUSIVE_MASK = (1 << SHARED_SHIFT) - 1;
    // 本地线程计数器
    private transient ThreadLocalHoldCounter readHolds;
    // 缓存的计数器
    private transient HoldCounter cachedHoldCounter;
    // 第一个读线程
    private transient Thread firstReader = null;
    // 第一个读线程的计数
    private transient int firstReaderHoldCount;
}

2.写锁的获取与释放

protected final boolean tryAcquire(int acquires) {
            /*
             * Walkthrough:
             * 1. If read count nonzero or write count nonzero
             *    and owner is a different thread, fail.
             * 2. If count would saturate, fail. (This can only
             *    happen if count is already nonzero.)
             * 3. Otherwise, this thread is eligible for lock if
             *    it is either a reentrant acquire or
             *    queue policy allows it. If so, update state
             *    and set owner.
             */
            Thread current = Thread.currentThread();
            int c = getState();
            //获取独占锁(写锁)的被获取的数量
            int w = exclusiveCount(c);
            if (c != 0) {
                // (Note: if c != 0 and w == 0 then shared count != 0)
                //1.如果同步状态不为0,且写状态为0,则表示当前同步状态被读锁获取
                //2.或者当前拥有写锁的线程不是当前线程
                if (w == 0 || current != getExclusiveOwnerThread())
                    return false;
                if (w + exclusiveCount(acquires) > MAX_COUNT)
                    throw new Error("Maximum lock count exceeded");
                // Reentrant acquire
                setState(c + acquires);
                return true;
            }
            if (writerShouldBlock() ||
                !compareAndSetState(c, c + acquires))
                return false;
            setExclusiveOwnerThread(current);
            return true;
        }

1)c是获取当前锁状态,w是获取写锁的状态。

2)如果锁状态不为零,而写锁的状态为0,则表示读锁状态不为0,所以当前线程不能获取写锁。或者锁状态不为零,而写锁的状态也不为0,但是获取写锁的线程不是当前线程,则当前线程不能获取写锁。

3)写锁是一个可重入的排它锁,在获取同步状态时,增加了一个读锁是否存在的判断。

写锁的释放与ReentrantLock的释放过程类似,每次释放将写状态减1,直到写状态为0时,才表示该写锁被释放了。

3.读锁的获取与释放

protected final int tryAcquireShared(int unused) {
    for(;;) {
        int c = getState();
        int nextc = c + (1<<16);
        if(nextc < c) {
           throw new Error("Maxumum lock count exceeded");
        }
        if(exclusiveCount(c)!=0 && owner != Thread.currentThread())
           return -1;
        if(compareAndSetState(c,nextc))
           return 1;
    }
}

1)读锁是一个支持重进入的共享锁,可以被多个线程同时获取。

2)在没有写状态为0时,读锁总会被成功获取,而所做的也只是增加读状态(线程安全)

3)读状态是所有线程获取读锁次数的总和,而每个线程各自获取读锁的次数只能选择保存在ThreadLocal中,由线程自身维护。

读锁的每次释放均减小状态(线程安全的,可能有多个读线程同时释放锁),减小的值是1<<16。

4.锁降级

降级是指当前把持住写锁,再获取到读锁,随后释放(先前拥有的)写锁的过程。

锁降级过程中的读锁的获取是否有必要,答案是必要的。主要是为了保证数据的可见性,如果当前线程不获取读锁而直接释放写锁,假设此刻另一个线程获取的写锁,并修改了数据,那么当前线程就步伐感知到线程T的数据更新,如果当前线程遵循锁降级的步骤,那么线程T将会被阻塞,直到当前线程使数据并释放读锁之后,线程T才能获取写锁进行数据更新。

5.读锁与写锁的整体流程

读写锁总结

本篇详细介绍了ReentrantReadWriteLock的特征、实现、锁的获取过程,通过4个关键点的核心设计:

  • 读写状态的设计
  • 写锁的获取与释放
  • 读锁的获取与释放
  • 锁降级

从而才能实现:共享资源有读和写的操作,且写操作没有读操作那么频繁的应用场景。

以上就是Java中读写锁ReadWriteLock的原理与应用详解的详细内容,更多关于Java读写锁ReadWriteLock的资料请关注我们其它相关文章!

(0)

相关推荐

  • Java并发编程之显示锁ReentrantLock和ReadWriteLock读写锁

    在Java5.0之前,只有synchronized(内置锁)和volatile. Java5.0后引入了显示锁ReentrantLock. ReentrantLock概况 ReentrantLock是可重入的锁,它不同于内置锁, 它在每次使用都需要显示的加锁和解锁, 而且提供了更高级的特性:公平锁, 定时锁, 有条件锁, 可轮询锁, 可中断锁. 可以有效避免死锁的活跃性问题.ReentrantLock实现了 Lock接口: 复制代码 代码如下: public interface Lock {  

  • Java基于ReadWriteLock实现锁的应用

    所有 ReadWriteLock 实现都必须保证 writeLock 操作的内存同步效果也要保持与相关 readLock 的联系.也就是说,成功获取读锁的线程会看到写入锁之前版本所做的所有更新. 与互斥锁相比,读-写锁允许对共享数据进行更高级别的并发访问.虽然一次只有一个线程(writer 线程)可以修改共享数据,但在许多情况下,任何数量的线程可以同时读取共享数据(reader 线程),读-写锁利用了这一点.从理论上讲,与互斥锁相比,使用读-写锁所允许的并发性增强将带来更大的性能提高.在实践中,

  • Java并发编程之ReadWriteLock读写锁的操作方法

    1.ReadWriteLock介绍 为什么我们有了Lock,还要用ReadWriteLock呢.我们对共享资源加锁之后,所有的线程都将会等待.Lock读操作也锁,写操作也会锁,而对共享资源读的时候,其实是不用加锁的.当然读写同时存在的情况也会有. 比如我们数据库常用操作有增删改查,增删改都是写操作,写操作必须加锁,而读操作可以共享.不是所有的操作都需要加锁. 为了进一步提高复用性和粒度,写操作独占,读操作共享,不加锁. ReadWriteLock管理一组锁,一个是只读的锁,一个是写锁.读锁可以在

  • Java多线程编程之读写锁ReadWriteLock用法实例

    读写锁:分为读锁和写锁,多个读锁不互斥,读锁与写锁互斥,这是由jvm自己控制的,你只要上好相应的锁即可.如果你的代码只读数据,可以很多人同时读,但不能同时写,那就上读锁:如果你的代码修改数据,只能有一个人在写,且不能同时读取,那就上写锁.总之,读的时候上读锁,写的时候上写锁! 三个线程读数据,三个线程写数据示例: 可以同时读,读的时候不能写,不能同时写,写的时候不能读. 读的时候上读锁,读完解锁:写的时候上写锁,写完解锁. 注意finally解锁. package com.ljq.test.th

  • Java并发之搞懂读写锁

    目录 ReentrantReadWriteLock 小结 StampedLock 小结 总结 ReentrantReadWriteLock 我们来探讨一下java.concurrent.util包下的另一个锁,叫做ReentrantReadWriteLock,也叫读写锁. 实际项目中常常有这样一种场景: 比如有一个共享资源叫做Some Data,多个线程去操作Some Data,这个操作有读操作也有写操作,并且是读多写少的,那么在没有写操作的时候,多个线程去读Some Data是不会有线程安全问

  • Java中读写锁ReadWriteLock的原理与应用详解

    目录 什么是读写锁? 为什么需要读写锁? 读写锁的特点 读写锁的使用场景 读写锁的主要成员和结构图 读写锁的实现原理 读写锁总结 Java并发编程提供了读写锁,主要用于读多写少的场景,今天我就重点来讲解读写锁的底层实现原理 什么是读写锁? 读写锁并不是JAVA所特有的读写锁(Readers-Writer Lock)顾名思义是一把锁分为两部分:读锁和写锁,其中读锁允许多个线程同时获得,因为读操作本身是线程安全的,而写锁则是互斥锁,不允许多个线程同时获得写锁,并且写操作和读操作也是互斥的. 所谓的读

  • java中Servlet监听器的工作原理及示例详解

    监听器就是一个实现特定接口的普通java程序,这个程序专门用于监听另一个java对象的方法调用或属性改变,当被监听对象发生上述事件后,监听器某个方法将立即被执行. 监听器原理 监听原理 1.存在事件源 2.提供监听器 3.为事件源注册监听器 4.操作事件源,产生事件对象,将事件对象传递给监听器,并且执行监听器相应监听方法 监听器典型案例:监听window窗口的事件监听器 例如:swing开发首先制造Frame**窗体**,窗体本身也是一个显示空间,对窗体提供监听器,监听窗体方法调用或者属性改变:

  • java 中基本算法之希尔排序的实例详解

    java 中基本算法之希尔排序的实例详解 希尔排序(Shell Sort)是插入排序的一种.也称缩小增量排序,是直接插入排序算法的一种更高效的改进版本.希尔排序是非稳定排序算法.该方法因DL.Shell于1959年提出而得名. 希尔排序是把记录按下标的一定增量分组,对每组使用直接插入排序算法排序:随着增量逐渐减少,每组包含的关键词越来越多,当增量减至1时,整个文件恰被分成一组,算法便终止. 基本思想:算法先将要排序的一组数按某个增量d(n/2,n为要排序数的个数)分成若干组,每组中记录的下标相差

  • Java中的引用和动态代理的实现详解

    我们知道,动态代理(这里指JDK的动态代理)与静态代理的区别在于,其真实的代理类是动态生成的.但具体是怎么生成,生成的代理类包含了哪些内容,以什么形式存在,它为什么一定要以接口为基础? 如果去看动态代理的源代码(java.lang.reflect.Proxy),会发现其原理很简单(真正二进制类文件的生成是在本地方法中完成,源代码中没有),但其中用到了一个缓冲类java.lang.reflect.WeakCache<ClassLoader,Class<?>[],Class<?>

  • Java中由substring方法引发的内存泄漏详解

    内存溢出(out of memory ) :通俗的说就是内存不够用了,比如在一个无限循环中不断创建一个大的对象,很快就会引发内存溢出. 内存泄漏(leak of memory) :是指为一个对象分配内存之后,在对象已经不在使用时未及时的释放,导致一直占据内存单元,使实际可用内存减少,就好像内存泄漏了一样. 由substring方法引发的内存泄漏 substring(int beginIndex, int endndex )是String类的一个方法,但是这个方法在JDK6和JDK7中的实现是完全

  • Java中文件的读写方法之IO流详解

    目录 1.File类 1.1File类概述和构造方法 1.2File类创建功能 1.3File类判断和获取功能 1.4File类删除功能 2.递归 2.1递归 2.2递归求阶乘 2.3递归遍历目录 3.IO流 3.1 IO流概述和分类 3.2字节流写数据 3.3字节流写数据的三种方式 3.4字节流写数据的两个小问题 3.5字节流写数据加异常处理 3.6字节流读数据(一次读一个字节数据) 3.7字节流复制文本文件 3.8字节流读数据(一次读一个字节数组数据) 3.9字节流复制图片 总结 1.Fil

  • java 中mongodb的各种操作查询的实例详解

    java 中mongodb的各种操作查询的实例详解 一. 常用查询: 1. 查询一条数据:(多用于保存时判断db中是否已有当前数据,这里 is  精确匹配,模糊匹配 使用regex...) public PageUrl getByUrl(String url) { return findOne(new Query(Criteria.where("url").is(url)),PageUrl.class); } 2. 查询多条数据:linkUrl.id 属于分级查询 public Lis

  • java中 Set与Map排序输出到Writer详解及实例

     java中 Set与Map排序输出到Writer详解及实例 一般来说java.util.Set,java.util.Map输出的内容的顺序并不是按key的顺序排列的,但是java.util.TreeMap,java.util.TreeSet的实现却可以让Map/Set中元素内容以key的顺序排序,所以利用这个特性,可以将Map/Set转为TreeMap,TreeSet然后实现排序输出. 以下是实现的代码片段: /** * 对{@link Map}中元素以key排序后,每行以{key}={val

  • java 中同步方法和同步代码块的区别详解

    java 中同步方法和同步代码块的区别详解 在Java语言中,每一个对象有一把锁.线程可以使用synchronized关键字来获取对象上的锁.synchronized关键字可应用在方法级别(粗粒度锁)或者是代码块级别(细粒度锁). 问题的由来: 看到这样一个面试题: //下列两个方法有什么区别 public synchronized void method1(){} public void method2(){ synchronized (obj){} } synchronized用于解决同步问

  • java 中枚举类enum的values()方法的详解

    java 中枚举类enum的values()方法的详解 前言: 关于枚举,相信使用的已经很普遍了,现在主要写的是枚举中的一个特殊方法,values(), 为什么说特殊呢,因为在Enum 的 API 文档中也找不到这个方法.接下来就看看具体的使用. 理论上此方法可以将枚举类转变为一个枚举类型的数组,因为枚举中没有下标,我们没有办法通过下标来快速找到需要的枚举类,这时候,转变为数组之后,我们就可以通过数组的下标,来找到我们需要的枚举类.接下来就展示代码了. 首先是我们自己的枚举类. public e

随机推荐