详解Linux获取线程的PID(TID、LWP)的几种方式

在 Linux C/C++ 中通常是通过 pthread 库进行线程级别的操作。

在 pthread 库中有函数:

pthread_t pthread_self(void);

它返回一个 pthread_t 类型的变量,指代的是调用 pthread_self 函数的线程的 “ID”。

怎么理解这个“ID”呢?

这个“ID”是 pthread 库给每个线程定义的进程内唯一标识,是 pthread 库维持的。

由于每个进程有自己独立的内存空间,故此“ID”的作用域是进程级而非系统级(内核不认识)。

其实 pthread 库也是通过内核提供的系统调用(例如clone)来创建线程的,而内核会为每个线程创建系统全局唯一的“ID”来唯一标识这个线程。

这个系统全局唯一的“ID”叫做线程PID(进程ID),或叫做TID(线程ID),也有叫做LWP(轻量级进程=线程)的。

如何查看线程在内核的系统全局唯一“ID”呢?大体分为以下几种方式。

测试代码:

main.c

#define _GNU_SOURCE

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <unistd.h>
#include <pthread.h>

void *start_routine(void *arg) {
 char msg[32] = "";
 snprintf(msg, sizeof(msg)-1, "thd%d: i am thd%d\n", *((int *)arg), *((int *)arg));
 while (1) {
 write(1, msg, strlen(msg));
 sleep(1);
 }
}

int main() {

 int th1 = 1;
 pthread_t tid1;
 pthread_create(&tid1, NULL, start_routine, &th1);

 int th2 = 2;
 pthread_t tid2;
 pthread_create(&tid2, NULL, start_routine, &th2);

 int th3 = 3;
 pthread_t tid3;
 pthread_create(&tid3, NULL, start_routine, &th3);

 const char *msg = "main: i am main\n";
 while (1) {
 write(1, msg, strlen(msg));
 sleep(1);
 }

 return 0;
}

在主线程中通过 pthread 库创建三个线程,不断输出 “i am xxx” 的信息。

运行输出:

[test1280@localhost 20190227]$ gcc -o main main.c -lpthread
[test1280@localhost 20190227]$ ./main
main: i am main
thd2: i am thd2
thd3: i am thd3
thd1: i am thd1
thd2: i am thd2
……

方法一:ps -Lf $pid

[test1280@localhost ~]$ ps -Lf 11029
UID   PID PPID LWP C NLWP STIME TTY  STAT TIME CMD
test1280 11029 9374 11029 0 4 10:58 pts/0 Sl+ 0:00 ./main
test1280 11029 9374 11030 0 4 10:58 pts/0 Sl+ 0:00 ./main
test1280 11029 9374 11031 0 4 10:58 pts/0 Sl+ 0:00 ./main
test1280 11029 9374 11032 0 4 10:58 pts/0 Sl+ 0:00 ./main

11209是待观察的进程的PID。

输出中可见此进程包含4个线程,他们的PID都是11209,PPID都是9374,其中LWP即我们要找的线程ID。

我们注意到有一个线程的LWP同进程的PID一致,那个线程就是主线程。

-L Show threads, possibly with LWP and NLWP columns
-f does full-format listing.

方法二:pstree -p $pid

[test1280@localhost ~]$ pstree -p 11029
main(11029)─┬─{main}(11030)
   ├─{main}(11031)
   └─{main}(11032)

方法三:top -Hp $pid

[test1280@localhost ~]$ top -Hp 11029

在top中指定了进程PID,输出包含四个线程,通过PID字段可获知每个线程的PID(TID/LWP)。

man top
-H:Threads toggle
Starts top with the last remembered 'H' state reversed.
When this toggle is On, all individual threads will be displayed.
Otherwise, top displays a summation of all threads in a process.
-p:Monitor PIDs

方法四:ls -l /proc/$pid/task/

[test1280@localhost ~]$ ls -l /proc/11029/task/
total 0
dr-xr-xr-x. 6 test1280 test1280 0 Feb 27 10:58 11029
dr-xr-xr-x. 6 test1280 test1280 0 Feb 27 10:58 11030
dr-xr-xr-x. 6 test1280 test1280 0 Feb 27 10:58 11031
dr-xr-xr-x. 6 test1280 test1280 0 Feb 27 10:58 11032

方法五:pidstat -t -p $pid

[test1280@localhost ~]$ pidstat -t -p 11029
Linux 2.6.32-642.el6.x86_64 (localhost.localdomain) 02/27/2019 _x86_64_ (4 CPU)

11:20:39 AM  TGID  TID %usr %system %guest %CPU CPU Command
11:20:39 AM  11029   - 0.00 0.00 0.00 0.00  1 main
11:20:39 AM   -  11029 0.00 0.00 0.00 0.00  1 |__main
11:20:39 AM   -  11030 0.00 0.00 0.00 0.00  1 |__main
11:20:39 AM   -  11031 0.00 0.00 0.00 0.00  0 |__main
11:20:39 AM   -  11032 0.00 0.00 0.00 0.00  3 |__main

TGID是线程组ID,主线程的TID等同于主线程的线程组ID等同于主线程所在进程的进程ID。

man pidstat
-t Also display statistics for threads associated with selected tasks.
 This option adds the following values to the reports:
 TGID:The identification number of the thread group leader.
 TID:The identification number of the thread being monitored.

方法六:源码级获取

main.c

#define _GNU_SOURCE

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <unistd.h>
#include <pthread.h>
#include <sys/types.h>
#include <sys/syscall.h>

pid_t gettid() {
 return syscall(SYS_gettid);
}

void *start_routine(void *arg) {
 pid_t pid = gettid();
 pthread_t tid = pthread_self();
 printf("thd%d: pid=%d, tid=%lu\n", *((int *)arg), pid, tid);

 char msg[32] = "";
 snprintf(msg, sizeof(msg)-1, "thd%d: i am thd%d\n", *((int *)arg), *((int *)arg));
 while (1) {
 write(1, msg, strlen(msg));
 sleep(1);
 }
}

int main() {

 pid_t pid = gettid();
 pthread_t tid = pthread_self();
 printf("main: pid=%d, tid=%lu\n", pid, tid);

 int th1 = 1;
 pthread_t tid1;
 pthread_create(&tid1, NULL, start_routine, &th1);

 int th2 = 2;
 pthread_t tid2;
 pthread_create(&tid2, NULL, start_routine, &th2);

 int th3 = 3;
 pthread_t tid3;
 pthread_create(&tid3, NULL, start_routine, &th3);

 const char *msg = "main: i am main\n";
 while (1) {
 write(1, msg, strlen(msg));
 sleep(1);
 }

 return 0;
}

syscall(SYS_gettid) 系统调用返回一个 pid_t 类型值,即线程在内核中的ID。

[test1280@localhost 20190227]$ gcc -o main main.c -lpthread
[test1280@localhost 20190227]$ ./main
main: pid=11278, tid=140429854775040
main: i am main
thd3: pid=11281, tid=140429833787136
thd3: i am thd3
thd2: pid=11280, tid=140429844276992
thd2: i am thd2
thd1: pid=11279, tid=140429854766848
thd1: i am thd1
……

线程的PID(TID、LWP)有什么价值?

很多命令参数的 PID 实际指代内核中线程的ID,例如 taskset、strace 等命令。

例如 taskset 命令,可以将进程绑定到某个指定的CPU核心上。

如果进程是多线程模式,直接使用 taskset 将仅仅把主线程绑定,其他线程无法被绑定生效。

example:

# 将 11282 进程绑定到CPU第0核心
[test1280@localhost ~]$ ps -Lf 11282
UID   PID PPID LWP C NLWP STIME TTY  STAT TIME CMD
test1280 11282 9374 11282 0 4 11:33 pts/0 Sl+ 0:00 ./main
test1280 11282 9374 11283 0 4 11:33 pts/0 Sl+ 0:00 ./main
test1280 11282 9374 11284 0 4 11:33 pts/0 Sl+ 0:00 ./main
test1280 11282 9374 11285 0 4 11:33 pts/0 Sl+ 0:00 ./main
[test1280@localhost ~]$ taskset -pc 0 11282
pid 11282's current affinity list: 0-3
pid 11282's new affinity list: 0

# 查看其他线程是否真的绑定到CPU第0核心
[test1280@localhost ~]$ taskset -pc 11283
pid 11283's current affinity list: 0-3
[test1280@localhost ~]$ taskset -pc 11284
pid 11284's current affinity list: 0-3
[test1280@localhost ~]$ taskset -pc 11285
pid 11285's current affinity list: 0-3
[test1280@localhost ~]$ taskset -pc 11282
pid 11282's current affinity list: 0
# 此时实际只绑定主线程到CPU第0核心

# 将其他四个线程一并绑定到CPU第0核心
[test1280@localhost ~]$ taskset -pc 0 11283
pid 11283's current affinity list: 0-3
pid 11283's new affinity list: 0
[test1280@localhost ~]$ taskset -pc 0 11284
pid 11284's current affinity list: 0-3
pid 11284's new affinity list: 0
[test1280@localhost ~]$ taskset -pc 0 11285
pid 11285's current affinity list: 0-3
pid 11285's new affinity list: 0
# 此时,进程PID=11282的进程所有线程都将仅在CPU第0核心中运行

strace 同理,可以指定线程PID,追踪某个线程执行的系统调用以及信号。

到此这篇关于详解Linux获取线程的PID(TID、LWP)的几种方式的文章就介绍到这了,更多相关Linux获取线程的PID内容请搜索我们以前的文章或继续浏览下面的相关文章希望大家以后多多支持我们!

(0)

相关推荐

  • linux根据pid获取进程名和获取进程pid(c语言获取pid)

    Liunx中通过进程名查找进程PID可以通过 pidof [进程名] 来查找.反过来 ,相同通过PID查找进程名则没有相关命令.在linux根目录中,有一个/proc的VFS(虚拟文件系统),系统当前运行的所有进程都对应于该目录下的一个以进程PID命名的文件夹,其中存放进程运行的N多信息.其中有一个status文件,cat显示该文件, 第一行的Name即为进程名. 打开stardict程序,进程名为stardict: shell中分别根据Pid获取进程名.根据进程名获取Pid 1)查找stard

  • Linux下/var/run/目录下的pid文件详解及pid文件作用

    先给大家介绍下Linux下/var/run/目录下的pid文件,具体详解如下所示: linux系统中/var/run/目录下的*.pid文件是一个文本文件,其内容只有一行,即某个进程的PID..pid文件的作用是防止进程启动多个副本,只有获得特定pid文件(固定路径和文件名)的写入权限(F_WRLCK)的进程才能正常启动并将自身的进程PID写入该文件,其它同一程序的多余进程则自动退出. 编程实现: 调用fcntl()系统调用设置指定的pid文件为F_WRLCK锁状态,如果锁成功则写入当前进程的P

  • Linux pidof命令使用总结

    一.什么是pidof命令? 复制代码 代码如下: #man pidof中的解释:pidof - find the process ID of a running program.pidof–用于查找一个运行的程序的PID.pidof is actually the same program as killall5;[root@GoGo ~]# ls -l /sbin/pidoflrwxrwxrwx. 1 root root 8 Aug 25 00:40 /sbin/pidof -> killal

  • Linux中怎么通过PID号找到对应的进程名及所在目录方法

    有时候通过top命令可以看到有个别进程占用的内存比较大,但是top无法直接查看到进程名以及进程所在的目录.所以我们可以通过以下方法来定位. 首先需要知道PID号,可以通过top命令获取. 然后我们可以用ps看以下大致信息(ps出来的信息个人觉得比较乱,不是很方便查找) [root@iZbp13806tx36fgoq7bzk1Z 28990]# ps -aux |grep -v grep|grep 28990 28990 0.7 14.0 5112056 1128224 ? Ssl Sep26 2

  • linux shell 根据进程名获取pid的实现方法

    导读 Linux 的交互式 Shell 与 Shell 脚本存在一定的差异,主要是由于后者存在一个独立的运行进程,因此在获取进程 pid 上二者也有所区别. 交互式 Bash Shell 获取进程 pid 在已知进程名(name)的前提下,交互式 Shell 获取进程 pid 有很多种方法,典型的通过 grep 获取 pid 的方法为(这里添加 -v grep是为了避免匹配到 grep 进程): ps -ef | grep "name" | grep -v grep | awk '{p

  • linux根据进程号PID查找启动程序的全路径

    工作环境中遇到网络不正常,检测是某服务器异常往外发送数据包,使用netstat命令查看,发现有程序.IptabLex的这个进程状态为异常连接.无法有效清除,因此想知道是哪个目录的此程序处于僵死状态. [root@edu-web1 /]# netstat –anp | less 出问题时进程的状态为: [root@edu-web1 /] ps x 找到某进程启动路径的方法是: 1.我们可以从ps命令中得到僵死进程的PID,如上例中23347 2.进入/proc目录下以该PID命名的目录中 3.输入

  • 详解linux系统下pid的取值范围

    一般PID_MAX=0x8000(可改),因此进程号的最大值为0x7fff,即32767. 进程号0-299保留给daemon进程. 现在的内核好像没有这个限制了,<linux内核设计与实现>上说为了与老版本的unix和linux兼容,pid的最大值默认是32767(short int的最大值),如果你需要的话还可以不考虑和老版本兼容,修改/proc/sys/kernel/pid_max来提高上限用echo重新写入一个数值到这个文件即可. 由于一般机器不可能同时跑那么多进程+线程,所以3276

  • 详解Linux获取线程的PID(TID、LWP)的几种方式

    在 Linux C/C++ 中通常是通过 pthread 库进行线程级别的操作. 在 pthread 库中有函数: pthread_t pthread_self(void); 它返回一个 pthread_t 类型的变量,指代的是调用 pthread_self 函数的线程的 "ID". 怎么理解这个"ID"呢? 这个"ID"是 pthread 库给每个线程定义的进程内唯一标识,是 pthread 库维持的. 由于每个进程有自己独立的内存空间,故此&

  • 详解Linux用户态与内核态通信的几种方式

    Linux 用户态和内核态由于 CPU 权限的限制,通信并不像想象中的使用进程间通信方式那么简单,今天这篇文章就来看看 Linux 用户态和内核态究竟有哪些通信方式. 我们平常在写代码时,一般是在用户空间,通过系统调用函数来访问内核空间,这是最常用的一种用户态和内核态通信的方式.(关于 Linux 用户态和内核态可以参考 xx) 除此之外,还有以下四种方式: procfs(/proc) sysctl(/proc/sys) sysfs(/sys) netlink 套接口 procfs(/proc)

  • 详解Python获取线程返回值的三种方式

    目录 方法一 方法二 方法三 最后的话 提到线程,你的大脑应该有这样的印象:我们可以控制它何时开始,却无法控制它何时结束,那么如何获取线程的返回值呢?今天就分享一下自己的一些做法. 方法一 使用全局变量的列表,来保存返回值 ret_values = [] def thread_func(*args):     ...     value = ...     ret_values.append(value) 选择列表的一个原因是:列表的 append() 方法是线程安全的,CPython 中,GI

  • 详解在spring中使用JdbcTemplate操作数据库的几种方式

    使用JdbcTemplate的步骤 1.设置spring-jdbc和spring-tx的坐标(也就是导入依赖) <dependency> <groupId>org.springframework</groupId> <artifactId>spring-jdbc</artifactId> <version>5.2.7.RELEASE</version> </dependency> <dependency&

  • 详解C#批量插入数据到Sqlserver中的四种方式

    本篇,我将来讲解一下在Sqlserver中批量插入数据. 先创建一个用来测试的数据库和表,为了让插入数据更快,表中主键采用的是GUID,表中没有创建任何索引.GUID必然是比自增长要快的,因为你生成一个GUID算法所花的时间肯定比你从数据表中重新查询上一条记录的ID的值然后再进行加1运算要少.而如果存在索引的情况下,每次插入记录都会进行索引重建,这是非常耗性能的.如果表中无可避免的存在索引,我们可以通过先删除索引,然后批量插入,最后再重建索引的方式来提高效率. create database C

  • 详解在Spring-Boot中实现通用Auth认证的几种方式

    前言 最近一直被无尽的业务需求淹没,没时间喘息,终于接到一个能让我突破代码舒适区的活儿,解决它的过程非常曲折,一度让我怀疑人生,不过收获也很大,代码方面不明显,但感觉自己抹掉了 java.Tomcat.Spring 一直挡在我眼前的一层纱.对它们的理解上了一个新的层次. 好久没输出了,于是挑一个方面总结一下,希望在梳理过程中再了解一些其他的东西.由于 Java 繁荣的生态,下面每一个模块都有大量的文章专门讲述.所以我选了另外一个角度,从实际问题出发,将这些分散的知识串联起来,各位可以作为一个综述

  • 详解Linux系统中Oracle数据库程序的启动和关闭方式

    在单机环境下,要想启动或关闭ORACLE系统必须首先切换到ORACLE用户,如下 su - oracle Oracle数据库有以下几种启动方式: 1. startup nomount 非安装启动,这种方式启动下可执行:重建控制文件.重建数据库 读取init.ora文件,启动instance,即启动SGA和后台进程,这种启动只需要init.ora文件. 2. startup mount dbname 安装启动,这种方式启动下可执行: 数据库日志归档. 数据库介质恢复. 使数据文件联机或脱机, 重新

  • 详解将数据从Laravel传送到vue的四种方式

    在过去的两三年里,我一直在研究同时使用 Vue 和 Laravel 的项目,在每个项目开发的开始阶段,我必须问自己 "我将如何将数据从 Laravel 传递到 Vue ?".这适用于 Vue 前端组件与 Blade 模板紧密耦合的两个应用程序,以及运行完全独立于 Laravel 后端的单页应用程序. 这里有四种不同的方法从一个到另一个获取数据. 直接回显到数据对象或组件属性中 赞成: 简单明了 反对: 必须与嵌入到 Blade 模板中的 Vue 应用程序一起使用 可以说是将数据从 La

  • 详解SpringMVC注解版前台向后台传值的两种方式

    一.概述. 在很多企业的开法中常常用到SpringMVC+Spring+Hibernate(mybatis)这样的架构,SpringMVC相当于Struts是页面到Contorller直接的交互的框架也是界面把信息传输到Contorller层的一种架构,通过这个架构可以让我们把页面和Contorller层解耦,使得开发人员的分工更加明确. 二.代码演示. 1.首先配置SpringMVC环境. 1.1导入jar. 值得注意的是红色标记的commons-logging这个jar包一定得引入进去不然会

  • 详解用webpack的CommonsChunkPlugin提取公共代码的3种方式

    Webpack 的 CommonsChunkPlugin 插件,负责将多次被使用的 JS 模块打包在一起. CommonsChunkPlugin 能解决的问题 在使用插件前,考虑几个问题: 对哪些 chunk 进行提取,这决定了 chunks ,children 和 name 要怎么配置 common chunk 是否异步,这决定了 async 怎么配置 common chunk 的粒度,这决定了 minChunks 和 minSize 怎么配置 以下是官方给出的常用的场景: 提取两个及两个以上

随机推荐