python数字图像处理图像的绘制详解

目录
  • 正文
  • 一、用figure函数和subplot函数分别创建主窗口与子图
  • 二、用subplots来创建显示窗口与划分子图
    • 三、其它方法绘图并显示

正文

实际上前面我们就已经用到了图像的绘制,如:

io.imshow(img)

这一行代码的实质是利用matplotlib包对图片进行绘制,绘制成功后,返回一个matplotlib类型的数据。因此,我们也可以这样写:

import matplotlib.pyplot as plt
plt.imshow(img)

imshow()函数格式为:

matplotlib.pyplot.imshow(X, cmap=None)

X: 要绘制的图像或数组。

cmap: 颜色图谱(colormap), 默认绘制为RGB(A)颜色空间。

其它可选的颜色图谱如下列表:

颜色图谱 描述
autumn 红-橙-黄
bone 黑-白,x线
cool 青-洋红
copper 黑-铜
flag 红-白-蓝-黑
gray 黑-白
hot 黑-红-黄-白
hsv hsv颜色空间, 红-黄-绿-青-蓝-洋红-红
inferno 黑-红-黄
jet 蓝-青-黄-红
magma 黑-红-白
pink 黑-粉-白
plasma 绿-红-黄
prism  红-黄-绿-蓝-紫-...-绿模式
spring 洋红-黄
summer 绿-黄
viridis 蓝-绿-黄
winter 蓝-绿

用的比较多的有gray,jet等,如:

plt.imshow(image,plt.cm.gray)
plt.imshow(img,cmap=plt.cm.jet)

在窗口上绘制完图片后,返回一个AxesImage对象。要在窗口上显示这个对象,我们可以调用show()函数来进行显示,但进行练习的时候(ipython环境中),一般我们可以省略show()函数,也能自动显示出来。

from skimage import io,data
img=data.astronaut()
dst=io.imshow(img)
print(type(dst))
io.show()

显示为:

可以看到,类型是'matplotlib.image.AxesImage'。显示一张图片,我们通常更愿意这样写:

import matplotlib.pyplot as plt
from skimage import io,data
img=data.astronaut()
plt.imshow(img)
plt.show()

matplotlib是一个专业绘图的库,相当于matlab中的plot,可以设置多个figure窗口,设置figure的标题,隐藏坐标尺,甚至可以使用subplot在一个figure中显示多张图片。一般我们可以这样导入matplotlib库:

import matplotlib.pyplot as plt

也就是说,我们绘图实际上用的是matplotlib包的pyplot模块。

一、用figure函数和subplot函数分别创建主窗口与子图

例:分开并同时显示宇航员图片的三个通道

from skimage import data
import matplotlib.pyplot as plt
img=data.astronaut()
plt.figure(num='astronaut',figsize=(8,8))  #创建一个名为astronaut的窗口,并设置大小 

plt.subplot(2,2,1)     #将窗口分为两行两列四个子图,则可显示四幅图片
plt.title('origin image')   #第一幅图片标题
plt.imshow(img)      #绘制第一幅图片

plt.subplot(2,2,2)     #第二个子图
plt.title('R channel')   #第二幅图片标题
plt.imshow(img[:,:,0],plt.cm.gray)      #绘制第二幅图片,且为灰度图
plt.axis('off')     #不显示坐标尺寸

plt.subplot(2,2,3)     #第三个子图
plt.title('G channel')   #第三幅图片标题
plt.imshow(img[:,:,1],plt.cm.gray)      #绘制第三幅图片,且为灰度图
plt.axis('off')     #不显示坐标尺寸

plt.subplot(2,2,4)     #第四个子图
plt.title('B channel')   #第四幅图片标题
plt.imshow(img[:,:,2],plt.cm.gray)      #绘制第四幅图片,且为灰度图
plt.axis('off')     #不显示坐标尺寸

plt.show()   #显示窗口

在图片绘制过程中,我们用matplotlib.pyplot模块下的figure()函数来创建显示窗口,该函数的格式为:

matplotlib.pyplot.figure(num=None, figsize=None, dpi=None, facecolor=None, edgecolor=None)

所有参数都是可选的,都有默认值,因此调用该函数时可以不带任何参数,其中:

num: 整型或字符型都可以。如果设置为整型,则该整型数字表示窗口的序号。如果设置为字符型,则该字符串表示窗口的名称。用该参数来命名窗口,如果两个窗口序号或名相同,则后一个窗口会覆盖前一个窗口。

figsize: 设置窗口大小。是一个tuple型的整数,如figsize=(8,8)

dpi: 整形数字,表示窗口的分辨率。

facecolor: 窗口的背景颜色。

edgecolor: 窗口的边框颜色。

用figure()函数创建的窗口,只能显示一幅图片,如果想要显示多幅图片,则需要将这个窗口再划分为几个子图,在每个子图中显示不同的图片。我们可以使用subplot()函数来划分子图,函数格式为:

matplotlib.pyplot.subplot(nrows, ncols, plot_number)

nrows: 子图的行数。

ncols: 子图的列数。

plot_number: 当前子图的编号。

如:

plt.subplot(2,2,1)

则表示将figure窗口划分成了2行2列共4个子图,当前为第1个子图。我们有时也可以用这种写法:

plt.subplot(221)

两种写法效果是一样的。每个子图的标题可用title()函数来设置,是否使用坐标尺可用axis()函数来设置,如:

plt.subplot(221)
plt.title("first subwindow")
plt.axis('off')

二、用subplots来创建显示窗口与划分子图

除了上面那种方法创建显示窗口和划分子图,还有另外一种编写方法也可以,如下例:

import matplotlib.pyplot as plt
from skimage import data,color

img = data.immunohistochemistry()
hsv = color.rgb2hsv(img)

fig, axes = plt.subplots(2, 2, figsize=(7, 6))
ax0, ax1, ax2, ax3 = axes.ravel()

ax0.imshow(img)
ax0.set_title("Original image")

ax1.imshow(hsv[:, :, 0], cmap=plt.cm.gray)
ax1.set_title("H")

ax2.imshow(hsv[:, :, 1], cmap=plt.cm.gray)
ax2.set_title("S")

ax3.imshow(hsv[:, :, 2], cmap=plt.cm.gray)
ax3.set_title("V")

for ax in axes.ravel():
    ax.axis('off')

fig.tight_layout()  #自动调整subplot间的参数

直接用subplots()函数来创建并划分窗口。注意,比前面的subplot()函数多了一个s,该函数格式为:

matplotlib.pyplot.subplots(nrows=1, ncols=1)

nrows: 所有子图行数,默认为1。

ncols: 所有子图列数,默认为1。

返回一个窗口figure, 和一个tuple型的ax对象,该对象包含所有的子图,可结合ravel()函数列出所有子图,如:

fig, axes = plt.subplots(2, 2, figsize=(7, 6))
ax0, ax1, ax2, ax3 = axes.ravel()

创建了2行2列4个子图,分别取名为ax0,ax1,ax2和ax3, 每个子图的标题用set_title()函数来设置,如:

ax0.imshow(img)
ax0.set_title("Original image")

如果有多个子图,我们还可以使用tight_layout()函数来调整显示的布局,该函数格式为:

matplotlib.pyplot.tight_layout(pad=1.08, h_pad=None, w_pad=None, rect=None)

所有的参数都是可选的,调用该函数时可省略所有的参数。

pad: 主窗口边缘和子图边缘间的间距,默认为1.08

h_pad, w_pad: 子图边缘之间的间距,默认为 pad_inches

rect: 一个矩形区域,如果设置这个值,则将所有的子图调整到这个矩形区域内。

一般调用为:

plt.tight_layout()  #自动调整subplot间的参数

三、其它方法绘图并显示

除了使用matplotlib库来绘制图片,skimage还有另一个子模块viewer,也提供一个函数来显示图片。不同的是,它利用Qt工具来创建一块画布,从而在画布上绘制图像。

例:

from skimage import data
from skimage.viewer import ImageViewer

img = data.coins()
viewer = ImageViewer(img)
viewer.show()

最后总结一下,绘制和显示图片常用到的函数有:

函数名 功能 调用格式
figure 创建一个显示窗口 plt.figure(num=1,figsize=(8,8)
imshow 绘制图片 plt.imshow(image)
show 显示窗口 plt.show()
subplot 划分子图 plt.subplot(2,2,1)
title 设置子图标题(与subplot结合使用) plt.title('origin image')
axis 是否显示坐标尺 plt.axis('off')
subplots 创建带有多个子图的窗口 fig,axes=plt.subplots(2,2,figsize=(8,8))
ravel 为每个子图设置变量 ax0,ax1,ax2,ax3=axes.ravel()
set_title 设置子图标题(与axes结合使用) ax0.set_title('first window')
tight_layout 自动调整子图显示布局 plt.tight_layout()

以上就是python数字图像处理图像的绘制详解的详细内容,更多关于python数字图像处理绘制的资料请关注我们其它相关文章!

(0)

相关推荐

  • python数字图像处理环境安装与配置过程示例

    目录 引言 一.需要的安装包 二.下载并安装 anaconda 三.简单测试 四.skimage包的子模块 引言 一提到数字图像处理编程,可能大多数人就会想到matlab,但matlab也有自身的缺点: 1.不开源,价格贵 2.软件容量大.一般3G以上,高版本甚至达5G以上. 3.只能做研究,不易转化成软件. 因此,我们这里使用python这个脚本语言来进行数字图像处理. 要使用python,必须先安装python,一般是2.7版本以上,不管是在windows系统,还是linux系统,安装都是非

  • python数字图像处理skimage读取显示与保存图片

    目录 引言 一.从外部读取图片并显示 二.程序自带图片 三.保存图片 四.图片信息 引言 skimage提供了io模块,顾名思义,这个模块是用来图片输入输出操作的.为了方便练习,也提供一个data模块,里面嵌套了一些示例图片,我们可以直接使用. 引入skimage模块可用: from skimage import io 一.从外部读取图片并显示 读取单张彩色rgb图片,使用skimage.io.imread(fname)函数,带一个参数,表示需要读取的文件路径.显示图片使用skimage.io.

  • python数字图像处理数据类型及颜色空间转换

    目录 一.图像数据类型及转换 1.unit8转float 2.float转uint8 二.颜色空间及其转换 例:rgb转灰度图 其它的转换 例:rgb转hsv 一.图像数据类型及转换 在skimage中,一张图片就是一个简单的numpy数组,数组的数据类型有很多种,相互之间也可以转换.这些数据类型及取值范围如下表所示: Data type Range uint8 0 to 255 uint16 0 to 65535 uint32 0 to 232 float -1 to 1 or 0 to 1

  • python数字图像处理像素的访问与裁剪示例

    目录 引言 引言 图片读入程序中后,是以numpy数组存在的.因此对numpy数组的一切功能,对图片也适用.对数组元素的访问,实际上就是对图片像素点的访问. 彩色图片访问方式为: img[i,j,c] i表示图片的行数,j表示图片的列数,c表示图片的通道数(RGB三通道分别对应0,1,2).坐标是从左上角开始. 灰度图片访问方式为: gray[i,j] 例1:输出小猫图片的G通道中的第20行30列的像素值 from skimage import io,data img=data.chelsea(

  • python skimage图像处理

    目录 引言 scikit-image进行数字图像处理 图片信息 skimage包的子模块 从外部读取图片并显示 程序自带图片 保存图片 图像像素的访问与裁剪 color模块的rgb2gray()函数 结果 图像数据类型及颜色空间转换 1.unit8转float 2.float转uint8 其它的转换 图像的绘制 其它方法绘图并显示 图像的批量处理 图像的形变与缩放 1.改变图片尺寸resize 2.按比例缩放rescale 3.旋转 rotate 4.图像金字塔 对比度与亮度调整 1.gamma

  • python数字图像处理图像的绘制详解

    目录 正文 一.用figure函数和subplot函数分别创建主窗口与子图 二.用subplots来创建显示窗口与划分子图 三.其它方法绘图并显示 正文 实际上前面我们就已经用到了图像的绘制,如: io.imshow(img) 这一行代码的实质是利用matplotlib包对图片进行绘制,绘制成功后,返回一个matplotlib类型的数据.因此,我们也可以这样写: import matplotlib.pyplot as plt plt.imshow(img) imshow()函数格式为: matp

  • Python Numpy,mask图像的生成详解

    什么是掩膜(mask) 在numpy中,有一个模块叫做ma,这个模块几乎复制了numpy里面的所有函数,当然底层里面都换成了对自己定义的新的数据类型MaskedArray的操作. 我们来看最基本的array定义. An array class with possibly masked values. Masked values of True exclude the corresponding element from any computation. MaskedArray是一个可能带有掩膜信

  • Python OpenCV实现图像模板匹配详解

    目录 1.什么是模板匹配及模板匹配方法matchTemplate() 介绍 素材准备 2.单模板匹配 2.1 单目标匹配 2.2 多目标匹配 3.多模板匹配 1.什么是模板匹配及模板匹配方法matchTemplate() 介绍 提供一个模板图像,一个目标图像,且满足模板图像是目标图像的一部分,从目标图像中寻找特定的模板图像的过程,即为模板匹配.OpenCV提供了matchTemplate()方法帮助我们实现模板匹配. 该方法语法如下: cv2.matchTemplate(image, templ

  • Python+Opencv实现图像模板匹配详解

    目录 引言 一.匹配方法 二.匹配单个对象 三.匹配多个对象 引言 什么是模板匹配呢? 看到这里大家是否会觉得很熟悉的感觉涌上心头!在人脸识别是不是也会看见 等等. 模板匹配可以看作是对象检测的一种非常基本的形式.使用模板匹配,我们可以使用包含要检测对象的“模板”来检测输入图像中的对象. 一.匹配方法 cv2.matchTemplate(img, templ, method) 参数:(img: 原始图像.temple: 模板图像.method: 匹配度计算方法) 方法如下: cv2.TM_SQD

  • Python大批量搜索引擎图像爬虫工具详解

    python图像爬虫包 最近在做一些图像分类的任务时,为了扩充我们的数据集,需要在搜索引擎下爬取额外的图片来扩充我们的训练集.搞人工智能真的是太难了

  • Python图像处理之图像融合与ROI区域绘制详解

    目录 一.图像融合 二.图像ROI区域定位 三.图像属性 (1)shape (2)size (3)dtype 四.图像通道分离及合并 (1)split()函数 (2)merge()函数 五.图像类型转换 六.总结 一.图像融合 图像融合通常是指多张图像的信息进行融合,从而获得信息更丰富的结果,能够帮助人们观察或计算机处理.图5-1是将两张不清晰的图像融合得到更清晰的效果图. 图像融合是在图像加法的基础上增加了系数和亮度调节量,它与图像的主要区别如下[1-3]: 图像加法:目标图像 = 图像1 +

  • Python数字图像处理之霍夫线变换实现详解

    在图片处理中,霍夫变换主要是用来检测图片中的几何形状,包括直线.圆.椭圆等. 在skimage中,霍夫变换是放在tranform模块内,本篇主要讲解霍夫线变换. 对于平面中的一条直线,在笛卡尔坐标系中,可用y=mx+b来表示,其中m为斜率,b为截距.但是如果直线是一条垂直线,则m为无穷大,所有通常我们在另一坐标系中表示直线,即极坐标系下的r=xcos(theta)+ysin(theta).即可用(r,theta)来表示一条直线.其中r为该直线到原点的距离,theta为该直线的垂线与x轴的夹角.如

  • python数字图像处理之高级滤波代码详解

    本文提供许多的滤波方法,这些方法放在filters.rank子模块内. 这些方法需要用户自己设定滤波器的形状和大小,因此需要导入morphology模块来设定. 1.autolevel 这个词在photoshop里面翻译成自动色阶,用局部直方图来对图片进行滤波分级. 该滤波器局部地拉伸灰度像素值的直方图,以覆盖整个像素值范围. 格式:skimage.filters.rank.autolevel(image, selem) selem表示结构化元素,用于设定滤波器. from skimage im

  • Python数字图像处理基础直方图详解

    目录 直方图的定义 直方图的性质 直方图的应用 图像增强 图像分割 图像识别 Python直方图的计算 直方图的定义 直方图的性质 只统计某个灰度级出现的次数,图像的大小不一样的话, 某灰度值的像素出现的次数是不一样的. 那如果我们在这基础上除以像素总个数的话,那就是某一灰度级出现的概率,那么这样的话不同大小的同一内容图像其灰度直方图是一样的. 直方图的应用 图像增强 图像分割 图像识别 Python直方图的计算 import cv2 import numpy as np import matp

  • Python图像处理之图像量化处理详解

    目录 一.图像量化处理原理 二.图像量化实现 三.图像量化等级对比 四.K-Means聚类实现量化处理 五.总结 一.图像量化处理原理 量化(Quantization)旨在将图像像素点对应亮度的连续变化区间转换为单个特定值的过程,即将原始灰度图像的空间坐标幅度值离散化.量化等级越多,图像层次越丰富,灰度分辨率越高,图像的质量也越好:量化等级越少,图像层次欠丰富,灰度分辨率越低,会出现图像轮廓分层的现象,降低了图像的质量.图8-1是将图像的连续灰度值转换为0至255的灰度级的过程[1-3]. 如果

随机推荐