Python 实现LeNet网络模型的训练及预测

目录
  • 1.LeNet模型训练脚本
    • (1).下载CIFAR10数据集
    • (2).图像增强
    • (3).加载数据集
    • (4).显示部分图像
    • (5).初始化模型
    • (6).训练模型及保存模型参数
  • 2.预测脚本

1.LeNet模型训练脚本

整体的训练代码如下,下面我会为大家详细讲解这些代码的意思

import torch
import torchvision
from torchvision.transforms import transforms
import torch.nn as nn
from torch.utils.data import DataLoader
from pytorch.lenet.model import LeNet
import torch.optim as optim
import numpy as np
import matplotlib.pyplot as plt

transform = transforms.Compose(
    # 将数据集转换成tensor形式
    [transforms.ToTensor(),
     # 进行标准化,0.5是均值,也是方差,对应三个维度都是0.5
     transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))]
)

# 下载完整的数据集时,download=True,第一个为保存的路径,下载完后download要改为False
# 为训练集时,train=True,为测试集时,train=False
train_set = torchvision.datasets.CIFAR10('./data', train=True,
                                         download=False, transform=transform)

# 加载训练集,设置批次大小,是否打乱,number_works是线程数,window不设置为0会报错,linux可以设置非零
train_loader = DataLoader(train_set, batch_size=36,
                          shuffle=True, num_workers=0)

test_set = torchvision.datasets.CIFAR10('./data', train=False,
                                        download=False, transform=transform)
# 设置的批次大小一次性将所有测试集图片传进去
test_loader = DataLoader(test_set, batch_size=10000,
                         shuffle=False, num_workers=0)

# 迭代测试集的图片数据和标签值
test_img, test_label = next(iter(test_loader))

# CIFAR10的十个类别名称
classes = ('plane', 'car', 'bird', 'cat', 'deer',
           'dog', 'frog', 'horse', 'ship', 'truck')

# # ----------------------------显示图片-----------------------------------
# def imshow(img, label):
#     fig = plt.figure()
#     for i in range(len(img)):
#         ax = fig.add_subplot(1, len(img), i+1)
#         nping = img[i].numpy().transpose([1, 2, 0])
#         npimg = (nping * 2 + 0.5)
#         plt.imshow(npimg)
#         title = '{}'.format(classes[label[i]])
#         ax.set_title(title)
#         plt.axis('off')
#     plt.show()
#
#
# batch_image = test_img[: 5]
# label_img = test_label[: 5]
# imshow(batch_image, label_img)
# # ----------------------------------------------------------------------

net = LeNet()
# 定义损失函数,nn.CrossEntropyLoss()自带softmax函数,所以模型的最后一层不需要softmax进行激活
loss_function = nn.CrossEntropyLoss()
# 定义优化器,优化网络模型所有参数
optimizer = optim.Adam(net.parameters(), lr=0.001)

# 迭代五次
for epoch in range(5):
    # 初始损失设置为0
    running_loss = 0
    # 循环训练集,从1开始
    for step, data in enumerate(train_loader, start=1):
        inputs, labels = data
        # 优化器的梯度清零,每次循环都需要清零,否则梯度会无限叠加,相当于增加批次大小
        optimizer.zero_grad()
        # 将图片数据输入模型中
        outputs = net(inputs)
        # 传入预测值和真实值,计算当前损失值
        loss = loss_function(outputs, labels)
        # 损失反向传播
        loss.backward()
        # 进行梯度更新
        optimizer.step()
        # 计算该轮的总损失,因为loss是tensor类型,所以需要用item()取具体值
        running_loss += loss.item()
        # 每500次进行日志的打印,对测试集进行预测
        if step % 500 == 0:
            # torch.no_grad()就是上下文管理,测试时不需要梯度更新,不跟踪梯度
            with torch.no_grad():
                # 传入所有测试集图片进行预测
                outputs = net(test_img)
                # torch.max()中dim=1是因为结果为(batch, 10)的形式,我们只需要取第二个维度的最大值
                # max这个函数返回[最大值, 最大值索引],我们只需要取索引就行了,所以用[1]
                predict_y = torch.max(outputs, dim=1)[1]
                # (predict_y == test_label)相同返回True,不相等返回False,sum()对正确率进行叠加
                # 因为计算的变量都是tensor,所以需要用item()拿到取值
                accuracy = (predict_y == test_label).sum().item() / test_label.size(0)
                # running_loss/500是计算每一个step的loss,即每一步的损失
                print('[%d, %5d] train_loss: %.3f   test_accuracy: %.3f' %
                      (epoch+1, step, running_loss/500, accuracy))
                running_loss = 0.0

print('Finished Training!')

save_path = 'lenet.pth'
# 保存模型,字典形式
torch.save(net.state_dict(), save_path)

(1).下载CIFAR10数据集

首先要训练一个网络模型,我们需要足够多的图片做数据集,这里我们用的是torchvision.dataset为我们提供的CIFAR10数据集(更多的数据集可以去pytorch官网查看pytorch官网提供的数据集)

train_set = torchvision.datasets.CIFAR10('./data', train=True,
                                         download=False, transform=transform)
test_set = torchvision.datasets.CIFAR10('./data', train=False,
                                        download=False, transform=transform)

这部分代码是下载CIFAR10,第一个参数是下载数据集后存放的路径,train=True和False对应下载的训练集和测试集,transform是对应的图像增强方式

(2).图像增强

transform = transforms.Compose(
    # 将数据集转换成tensor形式
    [transforms.ToTensor(),
     # 进行标准化,0.5是均值,也是方差,对应三个维度都是0.5
     transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))]
)

这就是简单的图像图像增强,transforms.ToTensor()将数据集的所有图像转换成tensor, transforms.Normalize()是标准化处理,包含两个元组对应均值和标准差,每个元组包含三个元素对应图片的三个维度[channels, height, width],为什么是这样排序,别问,问就是pytorch要求的,顺序不能变,之后会看到transforms.Normalize([0.485, 0.406, 0.456], [0.229, 0.224, 0.225])这两组数据,这是官方给出的均值和标准差,之后标准化的时候会经常用到

(3).加载数据集

# 加载训练集,设置批次大小,是否打乱,number_works是线程数,window不设置为0会报错,linux可以设置非零
train_loader = DataLoader(dataset=train_set, batch_size=36,
                          shuffle=True, num_workers=0)
test_loader = DataLoader(dataset=test_set, batch_size=36,
                         shuffle=False, num_workers=0)

这里只简单的设置的四个参数也是比较重要的,第一个就是需要加载的训练集和测试集,shuffle=True表示将数据集打乱,batch_size表示一次性向设备放入36张图片,打包成一个batch,这时图片的shape就会从[3, 32, 32]----》[36, 3, 32, 32],传入网络模型的shape也必须是[None, channels, height, width],None代表一个batch多少张图片,否则就会报错,number_works是代表线程数,window系统必须设置为0,否则会报错,linux系统可以设置非0数

(4).显示部分图像

def imshow(img, label):
    fig = plt.figure()
    for i in range(len(img)):
        ax = fig.add_subplot(1, len(img), i+1)
        nping = img[i].numpy().transpose([1, 2, 0])
        npimg = (nping * 2 + 0.5)
        plt.imshow(npimg)
        title = '{}'.format(classes[label[i]])
        ax.set_title(title)
        plt.axis('off')
    plt.show()

batch_image = test_img[: 5]
label_img = test_label[: 5]
imshow(batch_image, label_img)

这部分代码是显示测试集当中前五张图片,运行后会显示5张拼接的图片

由于这个数据集的图片都比较小都是32x32的尺寸,有些可能也看的不太清楚,图中显示的是真实标签,注:显示图片的代码可能会这个报警(Clipping input data to the valid range for imshow with RGB data ([0…1] for floats or [0…255] for integers).),警告解决的方法:将图片数组转成uint8类型即可,即 plt.imshow(npimg.astype(‘uint8'),但是那样显示出来的图片会变,所以暂时可以先不用管。

(5).初始化模型

数据图片处理完了,下面就是我们的正式训练过程

net = LeNet()
# 定义损失函数,nn.CrossEntropyLoss()自带softmax函数,所以模型的最后一层不需要softmax进行激活
loss_function = nn.CrossEntropyLoss()
# 定义优化器,优化模型所有参数
optimizer = optim.Adam(net.parameters(), lr=0.001)

首先初始化LeNet网络,定义交叉熵损失函数,以及Adam优化器,关于注释写的,我们可以ctrl+鼠标左键查看CrossEntropyLoss(),翻到CrossEntropyLoss类,可以看到注释写的这个标准包含LogSoftmax函数,所以搭建LetNet模型的最后一层没有使用softmax激活函数

(6).训练模型及保存模型参数

for epoch in range(5):
    # 初始损失设置为0
    running_loss = 0
    # 循环训练集,从1开始
    for step, data in enumerate(train_loader, start=1):
        inputs, labels = data
        # 优化器的梯度清零,每次循环都需要清零,否则梯度会无限叠加,相当于增加批次大小
        optimizer.zero_grad()
        # 将图片数据输入模型中得到输出
        outputs = net(inputs)
        # 传入预测值和真实值,计算当前损失值
        loss = loss_function(outputs, labels)
        # 损失反向传播
        loss.backward()
        # 进行梯度更新(更新W,b)
        optimizer.step()
        # 计算该轮的总损失,因为loss是tensor类型,所以需要用item()取到值
        running_loss += loss.item()
        # 每500次进行日志的打印,对测试集进行测试
        if step % 500 == 0:
            # torch.no_grad()就是上下文管理,测试时不需要梯度更新,不跟踪梯度
            with torch.no_grad():
                # 传入所有测试集图片进行预测
                outputs = net(test_img)
                # torch.max()中dim=1是因为结果为(batch, 10)的形式,我们只需要取第二个维度的最大值,第二个维度是包含十个类别每个类别的概率的向量
                # max这个函数返回[最大值, 最大值索引],我们只需要取索引就行了,所以用[1]
                predict_y = torch.max(outputs, dim=1)[1]
                # (predict_y == test_label)相同返回True,不相等返回False,sum()对正确结果进行叠加,最后除测试集标签的总个数
                # 因为计算的变量都是tensor,所以需要用item()拿到取值
                accuracy = (predict_y == test_label).sum().item() / test_label.size(0)
                # running_loss/500是计算每一个step的loss,即每一步的损失
                print('[%d, %5d] train_loss: %.3f   test_accuracy: %.3f' %
                      (epoch+1, step, running_loss/500, accuracy))
                running_loss = 0.0

print('Finished Training!')

save_path = 'lenet.pth'
# 保存模型,字典形式
torch.save(net.state_dict(), save_path)

这段代码注释写的很清楚,大家仔细看就能看懂,流程不复杂,多看几遍就能理解,最后再对训练好的模型进行保存就好了(* ̄︶ ̄)

2.预测脚本

上面已经训练好了模型,得到了lenet.pth参数文件,预测就很简单了,可以去网上随便找一张数据集包含的类别图片,将模型参数文件载入模型,通过对图像进行一点处理,喂入模型即可,下面奉上代码:

import torch
import numpy as np
import torchvision.transforms as transforms
from PIL import Image
from pytorch.lenet.model import LeNet

classes = ('plane', 'car', 'bird', 'cat', 'deer',
           'dog', 'frog', 'horse', 'ship', 'truck')

transforms = transforms.Compose(
    # 对数据图片调整大小
    [transforms.Resize([32, 32]),
     transforms.ToTensor(),
     transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))]
)

net = LeNet()
# 加载预训练模型
net.load_state_dict(torch.load('lenet.pth'))
# 网上随便找的猫的图片
img_path = '../../Photo/cat2.jpg'
img = Image.open(img_path)
# 图片的处理
img = transforms(img)
# 增加一个维度,(channels, height, width)------->(batch, channels, height, width),pytorch要求必须输入这样的shape
img = torch.unsqueeze(img, dim=0)

with torch.no_grad():
    output = net(img)
    # dim=1,只取[batch, 10]中10个类别的那个维度,取预测结果的最大值索引,并转换为numpy类型
    prediction1 = torch.max(output, dim=1)[1].data.numpy()
    # 用softmax()预测出一个概率矩阵
    prediction2 = torch.softmax(output, dim=1)
    # 得到概率最大的值得索引
    prediction2 = np.argmax(prediction2)
# 两种方式都可以得到最后的结果
print(classes[int(prediction1)])
print(classes[int(prediction2)])

反正我最后预测出来结果把猫识别成了狗,还有90.01%的概率,就离谱哈哈哈,但也说明了LeNet这个网络模型确实很浅,特征提取的不够深,才会出现这种。

到此这篇关于Python 实现LeNet网络模型的训练及预测的文章就介绍到这了,更多相关LeNet网络模型训练及预测内容请搜索我们以前的文章或继续浏览下面的相关文章希望大家以后多多支持我们!

(0)

相关推荐

  • Python LeNet网络详解及pytorch实现

    目录 1.LeNet介绍 2.LetNet网络模型 3.pytorch实现LeNet 1.LeNet介绍 LeNet神经网络由深度学习三巨头之一的Yan LeCun提出,他同时也是卷积神经网络 (CNN,Convolutional Neural Networks)之父.LeNet主要用来进行手写字符的识别与分类,并在美国的银行中投入了使用.LeNet的实现确立了CNN的结构,现在神经网络中的许多内容在LeNet的网络结构中都能看到,例如卷积层,Pooling层,ReLU层.虽然LeNet早在20

  • Python深度学习pytorch卷积神经网络LeNet

    目录 LeNet 模型训练 在本节中,我们将介绍LeNet,它是最早发布的卷积神经网络之一.这个模型是由AT&T贝尔实验室的研究院Yann LeCun在1989年提出的(并以其命名),目的是识别手写数字.当时,LeNet取得了与支持向量机性能相媲美的成果,成为监督学习的主流方法.LeNet被广泛用于自动取款机中,帮助识别处理支票的数字. LeNet 总体来看,LeNet(LeNet-5)由两个部分组成: 卷积编码器: 由两个卷积层组成 全连接层密集快: 由三个全连接层组成 每个卷积块中的基本单元

  • Python深度学习之使用Pytorch搭建ShuffleNetv2

    一.model.py 1.1 Channel Shuffle def channel_shuffle(x: Tensor, groups: int) -> Tensor: batch_size, num_channels, height, width = x.size() channels_per_group = num_channels // groups # reshape # [batch_size, num_channels, height, width] -> [batch_size

  • Python 实现LeNet网络模型的训练及预测

    目录 1.LeNet模型训练脚本 (1).下载CIFAR10数据集 (2).图像增强 (3).加载数据集 (4).显示部分图像 (5).初始化模型 (6).训练模型及保存模型参数 2.预测脚本 1.LeNet模型训练脚本 整体的训练代码如下,下面我会为大家详细讲解这些代码的意思 import torch import torchvision from torchvision.transforms import transforms import torch.nn as nn from torch

  • Python中利用LSTM模型进行时间序列预测分析的实现

    时间序列模型 时间序列预测分析就是利用过去一段时间内某事件时间的特征来预测未来一段时间内该事件的特征.这是一类相对比较复杂的预测建模问题,和回归分析模型的预测不同,时间序列模型是依赖于事件发生的先后顺序的,同样大小的值改变顺序后输入模型产生的结果是不同的. 举个栗子:根据过去两年某股票的每天的股价数据推测之后一周的股价变化:根据过去2年某店铺每周想消费人数预测下周来店消费的人数等等 RNN 和 LSTM 模型 时间序列模型最常用最强大的的工具就是递归神经网络(recurrent neural n

  • Python数据分析之双色球基于线性回归算法预测下期中奖结果示例

    本文实例讲述了Python数据分析之双色球基于线性回归算法预测下期中奖结果.分享给大家供大家参考,具体如下: 前面讲述了关于双色球的各种算法,这里将进行下期双色球号码的预测,想想有些小激动啊. 代码中使用了线性回归算法,这个场景使用这个算法,预测效果一般,各位可以考虑使用其他算法尝试结果. 发现之前有很多代码都是重复的工作,为了让代码看的更优雅,定义了函数,去调用,顿时高大上了 #!/usr/bin/python # -*- coding:UTF-8 -*- #导入需要的包 import pan

  • Python通过TensorFLow进行线性模型训练原理与实现方法详解

    本文实例讲述了Python通过TensorFLow进行线性模型训练原理与实现方法.分享给大家供大家参考,具体如下: 1.相关概念 例如要从一个线性分布的途中抽象出其y=kx+b的分布规律 特征是输入变量,即简单线性回归中的 x 变量.简单的机器学习项目可能会使用单个特征,而比较复杂的机器学习项目可能会使用数百万个特征. 标签是我们要预测的事物,即简单线性回归中的 y 变量. 样本是指具体的数据实例.有标签样本是指具有{特征,标签}的数据,用于训练模型,总结规律.无标签样本只具有特征的数据x,通过

  • Python实现Keras搭建神经网络训练分类模型教程

    我就废话不多说了,大家还是直接看代码吧~ 注释讲解版: # Classifier example import numpy as np # for reproducibility np.random.seed(1337) # from keras.datasets import mnist from keras.utils import np_utils from keras.models import Sequential from keras.layers import Dense, Act

  • Python机器学习之手写KNN算法预测城市空气质量

    目录 一.KNN算法简介 二.KNN算法实现思路 三.KNN算法预测城市空气质量 1. 获取数据 2. 生成测试集和训练集 3. 实现KNN算法 一.KNN算法简介 KNN(K-Nearest Neighbor)最邻近分类算法是数据挖掘分类(classification)技术中常用算法之一,其指导思想是"近朱者赤,近墨者黑",即由你的邻居来推断出你的类别. KNN最邻近分类算法的实现原理:为了判断未知样本的类别,以所有已知类别的样本作为参照,计算未知样本与所有已知样本的距离,从中选取与

  • python目标检测SSD算法训练部分源码详解

    目录 学习前言 讲解构架 模型训练的流程 1.设置参数 2.读取数据集 3.建立ssd网络. 4.预处理数据集 5.框的编码 6.计算loss值 7.训练模型并保存 开始训练 学习前言 ……又看了很久的SSD算法,今天讲解一下训练部分的代码.预测部分的代码可以参照https://blog.csdn.net/weixin_44791964/article/details/102496765 讲解构架 本次教程的讲解主要是对训练部分的代码进行讲解,该部分讲解主要是对训练函数的执行过程与执行思路进行详

  • python神经网络slim常用函数训练保存模型

    目录 学习前言 slim是什么 slim常用函数 1.slim = tf.contrib.slim 2.slim.create_global_step 3.slim.dataset.Dataset 4.slim.dataset_data_provider.DatasetDataProvider 5.slim.conv2d 6.slim.max_pool2d 7.slim.fully_connected 8.slim.learning.train 本次博文实现的目标 整体框架构建思路 1.整体框架

  • python目标检测yolo2详解及预测代码复现

    目录 前言 实现思路 1.yolo2的预测思路(网络构建思路) 2.先验框的生成 3.利用先验框对网络的输出进行解码 4.进行得分排序与非极大抑制筛选 实现结果 前言 ……最近在学习yolo1.yolo2和yolo3,写这篇博客主要是为了让自己对yolo2的结构有更加深刻的理解,同时要理解清楚先验框的含义. 尽量配合代码观看会更容易理解. 直接下载 实现思路 1.yolo2的预测思路(网络构建思路) YOLOv2使用了一个新的分类网络DarkNet19作为特征提取部分,DarkNet19包含19

  • python神经网络AlexNet分类模型训练猫狗数据集

    目录 什么是AlexNet模型 训练前准备 1.数据集处理 2.创建Keras的AlexNet模型 开始训练 1.训练的主函数 2.Keras数据生成器 3.主训练函数全部代码 训练结果 最近在做实验室的工作,要用到分类模型,老板一星期催20次,我也是无语了,上有对策下有政策,在下先找个猫猫狗狗的数据集练练手,快乐极了 什么是AlexNet模型 AlexNet是2012年ImageNet竞赛冠军获得者Hinton和他的学生Alex Krizhevsky设计的.也是在那年之后,更多的更深的神经网络

随机推荐