MySQL分库分表详情

一、业务场景介绍

假设目前有一个电商系统使用的是MySQL,要设计大数据量存储、高并发、高性能可扩展的方案,数据库中有用户表。用户会非常多,并且要实现高扩展性,你会怎么去设计? OK咱们先看传统的分库分表方式

当然还有些小伙伴知道按照省份/地区或一定的业务关系进行数据库拆分

OK,问题来了,如何保证合理的让数据存储在不同的库不同的表里呢?让库减少并发压力?应该怎么去制定分库分表的规则?不用急,这不就来了

二、水平分库分表方法

1.RANGE

第一种方法们可以指定一个数据范围来进行分表,例如从1~1000000,1000001-2000000,使用一百万一张表的方式,如下图所示

在这里插入图片描述 当然这种方法需要维护表的ID,特别是分布式环境下,这种分布式ID,在不使用第三方分表工具的情况下,建议使用RedisRedisincr操作可以轻松的维护分布式的表ID。

RANGE方法优点: 扩容简单,提前建好库、表就好

RANGE方法缺点: 大部分读和写都访会问新的数据,有IO瓶颈,这样子造成新库压力过大,不建议采用。

2.HASH取模

针对上述RANGE方式分表有IO瓶颈的问题,咱们可以采用根据用户ID HASG取模的方式进行分库分表,如图所示:

这样就可以将数据分散在不同的库、表中,避免了IO瓶颈的问题。

HASH取模方法优点: 能保证数据较均匀的分散落在不同的库、表中,减轻了数据库压力

HASH取模方法缺点: 扩容麻烦、迁移数据时每次都需要重新计算hash值分配到不同的库和表

3.一致性HASH

通过HASH取模也不是最完美的办法,那什么才是呢?

使用一致性HASH算法能完美的解决问题

普通HASH算法:

普通哈希算法将任意长度的二进制值映射为较短的固定长度的二进制值,这个小的二进制值称为哈希值。哈希值是一段数据唯一且极其紧凑的数值表示形式。

普通的hash算法在分布式应用中的不足:在分布式的存储系统中,要将数据存储到具体的节点上,如果我们采用普通的hash算法进行路由,将数据映射到具体的节点上,如key%nkey是数据的key,n是机器节点数,如果有一个机器加入或退出集群,则所有的数据映射都无效了,如果是持久化存储则要做数据迁移,如果是分布式缓存,则其他缓存就失效了。

一致性HASH算法: 按照常用的hash算法来将对应的key哈希到一个具有2^32次方个节点的空间中,即0~ (2^32)-1的数字空间中。现在我们可以将这些数字头尾相连,想象成一个闭合的环形,如下图所示。

这个圆环首尾相连,那么假设现在有三个数据库服务器节点node1node2node3三个节点,每个节点负责自己这部分的用户数据存储,假设有用户user1、user2、user3,我们可以对服务器节点进行HASH运算,假设HASH计算后,user1落在node1上,user2落在node2上,user3落在user3上

OK,现在咱们假设node3节点失效了

user3将会落到node1上,而之前的node1和node2数据不会改变,再假设新增了节点node4

你会发现user3会落到node4上,你会发现,通过对节点的添加和删除的分析,一致性哈希算法在保持了单调性的同时,还是数据的迁移达到了最小,这样的算法对分布式集群来说是非常合适的,避免了大量数据迁移,减小了服务器的的压力。

当然还有一个问题还需要解决,那就是平衡性。从图我们可以看出,当服务器节点比较少的时候,会出现一个问题,就是此时必然造成大量数据集中到一个节点上面,极少数数据集中到另外的节点上面。

为了解决这种数据倾斜问题,一致性哈希算法引入了虚拟节点机制,即对每一个服务节点计算多个哈希,每个计算结果位置都放置一个节点,称为虚拟节点。具体做法可以先确定每个物理节点关联的虚拟节点数量,然后在ip或者主机名后面增加编号。例如上面的情况,可以为每台服务器计算三个虚拟节点,于是可以分别计算 “node 1-1”、“node 1-2”、“node 1-3”、“node 2-1”、“node 2-2”、“node 2-3”、“node 3-1”、“node 3-2”、“node 3-3”的哈希值,这样形成九个虚拟节点

例如user1定位到node 1-1node 1-2node 1-3上其实都是定位到node1这个节点上,这样能够解决服务节点少时数据倾斜的问题,当然这个虚拟节点的个数不是说固定三个或者至多、至少三个,这里只是一个例子,具体虚拟节点的多少,需要根据实际的业务情况而定。

一致性HASH方法优点: 通过虚拟节点方式能保证数据较均匀的分散落在不同的库、表中,并且新增、删除节点不影响其他节点的数据,高可用、容灾性强。

一致性取模方法缺点: 嗯,比起以上两种,可以认为没有。

三、单元测试

OK,不废话,接下来上单元测试,假设有三个节点,每个节点有三个虚拟节点的情况

package com.hyh.core.test;

import com.hyh.utils.common.StringUtils;
import org.junit.Test;

import java.util.LinkedList;
import java.util.List;
import java.util.SortedMap;
import java.util.TreeMap;

/**
 * 一致性HASH TEST
 *
 * @Author heyuhua
 * @create 2021/1/31 19:50
 */
public class ConsistentHashTest {

    //待添加入Hash环的服务器列表
    private static String[] servers = {"192.168.5.1", "192.168.5.2", "192.168.5.3"};

    //真实结点列表,考虑到服务器上线、下线的场景,即添加、删除的场景会比较频繁,这里使用LinkedList会更好
    private static List<String> realNodes = new LinkedList<>();

    //虚拟节点,key表示虚拟节点的hash值,value表示虚拟节点的名称
    private static SortedMap<Integer, String> virtualNodes = new TreeMap<>();

    //一个真实结点对应3个虚拟节点
    private static final int VIRTUAL_NODES = 3;

    /**
     * 测试有虚拟节点的一致性HASH
     */
    @Test
    public void testConsistentHash() {
        initNodes();
        String[] users = {"user1", "user2", "user3", "user4", "user5", "user6", "user7", "user8", "user9"};
        for (int i = 0; i < users.length; i++)
            System.out.println("[" + users[i] + "]的hash值为" +
                    getHash(users[i]) + ", 被路由到结点[" + getServer(users[i]) + "]");
    }

    /**
     * 先把原始的服务器添加到真实结点列表中
     */
    public void initNodes() {
        for (int i = 0; i < servers.length; i++)
            realNodes.add(servers[i]);
        for (String str : realNodes) {
            for (int i = 0; i < VIRTUAL_NODES; i++) {
                String virtualNodeName = str + "-虚拟节点" + String.valueOf(i);
                int hash = getHash(virtualNodeName);
                System.out.println("虚拟节点[" + virtualNodeName + "]被添加, hash值为" + hash);
                virtualNodes.put(hash, virtualNodeName);
            }
        }
        System.out.println();
    }

    //使用FNV1_32_HASH算法计算服务器的Hash值,这里不使用重写hashCode的方法,最终效果没区别
    private static int getHash(String str) {
        final int p = 16777619;
        int hash = (int) 2166136261L;
        for (int i = 0; i < str.length(); i++)
            hash = (hash ^ str.charAt(i)) * p;
        hash += hash << 13;
        hash ^= hash >> 7;
        hash += hash << 3;
        hash ^= hash >> 17;
        hash += hash << 5;

        // 如果算出来的值为负数则取其绝对值
        if (hash < 0)
            hash = Math.abs(hash);
        return hash;
    }

    //得到应当路由到的结点
    private static String getServer(String key) {
        //得到该key的hash值
        int hash = getHash(key);
        // 得到大于该Hash值的所有Map
        SortedMap<Integer, String> subMap = virtualNodes.tailMap(hash);
        String virtualNode;
        if (subMap.isEmpty()) {
            //如果没有比该key的hash值大的,则从第一个node开始
            Integer i = virtualNodes.firstKey();
            //返回对应的服务器
            virtualNode = virtualNodes.get(i);
        } else {
            //第一个Key就是顺时针过去离node最近的那个结点
            Integer i = subMap.firstKey();
            //返回对应的服务器
            virtualNode = subMap.get(i);
        }
        //virtualNode虚拟节点名称要截取一下
        if (StringUtils.isNotBlank(virtualNode)) {
            return virtualNode.substring(0, virtualNode.indexOf("-"));
        }
        return null;
    }
}

这里模拟9个用户对象hash后被路由的情况,看下结果

总结:

分库分表在分布式微服务架构环境下建议强烈使用一致性HASH算法来做,当然分布式环境下也会产生业务数据数据一致性、分布式事务问题,下期咱们再来探讨数据一致性、分布式事务的解决方案

到此这篇关于MySQL分库分表详情的文章就介绍到这了,更多相关MySQL分库分表内容请搜索我们以前的文章或继续浏览下面的相关文章希望大家以后多多支持我们!

(0)

相关推荐

  • MYSQL数据库数据拆分之分库分表总结

    数据存储演进思路一:单库单表 单库单表是最常见的数据库设计,例如,有一张用户(user)表放在数据库db中,所有的用户都可以在db库中的user表中查到. 数据存储演进思路二:单库多表 随着用户数量的增加,user表的数据量会越来越大,当数据量达到一定程度的时候对user表的查询会渐渐的变慢,从而影响整个DB的性能.如果使用mysql, 还有一个更严重的问题是,当需要添加一列的时候,mysql会锁表,期间所有的读写操作只能等待. 可以通过某种方式将user进行水平的切分,产生两个表结构完全一样的

  • mysql分表分库的应用场景和设计方式

    很多朋友在论坛和留言区域问mysql在什么情况下才需要进行分库分表,以及采用何种设计方式才是最优的选择,根据这些问题,小编为大家整理了关于MySQL分库分表的应用场景和最优的设计方式举例. 一. 分表 场景:对于大型的互联网应用来说,数据库单表的记录行数可能达到千万级甚至是亿级,并且数据库面临着极高的并发访问.采用Master-Slave复制模式的MySQL架构, 只能够对数据库的读进行扩展,而对数据库的写入操作还是集中在Master上,并且单个Master挂载的Slave也不可能无限制多,Sl

  • Mysql数据库分库和分表方式(常用)

    本文主要给大家介绍Mysql数据库分库和分表方式(常用),涉及到mysql数据库相关知识,对mysql数据库分库分表相关知识感兴趣的朋友一起学习吧 1 分库 1.1 按照功能分库 按照功能进行分库.常见的分成6大库: 1 用户类库:用于保存了用户的相关信息.例如:db_user,db_system,db_company等. 2 业务类库:用于保存主要业务的信息.比如主要业务是笑话,用这个库保存笑话业务.例如:db_joke,db_temp_joke等. 3 内存类库:主要用Mysql的内存引擎.

  • MySQL分库分表总结讲解

    项目开发中,我们的数据库数据越来越大,随之而来的是单个表中数据太多.以至于查询变慢,而且由于表的锁机制导致应用操作也受到严重影响,出现了数据库性能瓶颈. 当出现这种情况时,我们可以考虑分库分表,即将单个数据库或表进行拆分,拆分成多个库和多个数据表,然后用户访问的时候,根据一定的算法与逻辑,让用户访问不同的库.不同的表,这样数据分散到多个数据表中,减少了单个数据表的访问压力.提升了数据库访问性能. 下面是对项目中分库分表的一些总结: 单库单表 单库单表是最常见的数据库设计,例如,有一张用户(use

  • MyBatis实现Mysql数据库分库分表操作和总结(推荐)

    前言 作为一个数据库,作为数据库中的一张表,随着用户的增多随着时间的推移,总有一天,数据量会大到一个难以处理的地步.这时仅仅一张表的数据就已经超过了千万,无论是查询还是修改,对于它的操作都会很耗时,这时就需要进行数据库切分的操作了. MyBatis实现分表最简单步骤 既然文章的标题都这么写了,不如直接上干货来的比较实际,我们就先来看看如何实现最简单的分表. 1.我们模拟用户表数据量超过千万(虽然实际不太可能) 2.用户表原来的名字叫做user_tab,我们切分为user_tab_0和user_t

  • MySQL 分表分库怎么进行数据切分

    关系型数据库本身比较容易成为系统瓶颈,单机存储容量.连接数.处理能力都有限.当单表的数据量达到1000W或100G以后,由于查询维度较多,即使添加从库.优化索引,做很多操作时性能仍下降严重.此时就要考虑对其进行切分了,切分的目的就在于减少数据库的负担,缩短查询时间. 数据库分布式核心内容无非就是数据切分(Sharding)以及切分后对数据的定位.整合.数据切分就是将数据分散存储到多个数据库中,使得单一数据库中的数据量变小,通过扩充主机的数量缓解单一数据库的性能问题,从而达到提升数据库操作性能的目

  • MySQL分库分表与分区的入门指南

    前言 关系型数据库比较容易成为系统瓶颈,单机存储容量.连接数.处理能力都有限,当数据量和并发量起来之后,就必须对数据库进行切分了. 数据切分(sharding)的手段就是分库分表.分库分表有两方面,可能是光分库不分表,也可能是光分表不分库. 数据库分布式的核心内容无非就是数据切分,以及切分后对数据的定位.整合. 为什么要分库分表 分表 单表数据量太大时,会严重影响sql执行的性能.一般单表到达几百万的时候,性能就会相对差一些了,这时就得分表了. 分表就是把一个表的数据放到多个表中,然后查询的时候

  • MySql分表、分库、分片和分区知识深入详解

    一.前言 数据库的数据量达到一定程度之后,为避免带来系统性能上的瓶颈.需要进行数据的处理,采用的手段是分区.分片.分库.分表. 二.分片(类似分库) 分片是把数据库横向扩展(Scale Out)到多个物理节点上的一种有效的方式,其主要目的是为突破单节点数据库服务器的 I/O 能力限制,解决数据库扩展性问题.Shard这个词的意思是"碎片".如果将一个数据库当作一块大玻璃,将这块玻璃打碎,那么每一小块都称为数据库的碎片(DatabaseShard).将整个数据库打碎的过程就叫做分片,可以

  • MySql分表、分库、分片和分区知识点介绍

    一.前言 数据库的数据量达到一定程度之后,为避免带来系统性能上的瓶颈.需要进行数据的处理,采用的手段是分区.分片.分库.分表. 二.分片(类似分库) 分片是把数据库横向扩展(Scale Out)到多个物理节点上的一种有效的方式,其主要目的是为突破单节点数据库服务器的 I/O 能力限制,解决数据库扩展性问题.Shard这个词的意思是"碎片".如果将一个数据库当作一块大玻璃,将这块玻璃打碎,那么每一小块都称为数据库的碎片(DatabaseShard).将整个数据库打碎的过程就叫做分片,可以

  • mysql数据库分表分库的策略

    一.先说一下为什么要分表: 当一张的数据达到几百万时,你查询一次所花的时间会变多,如果有联合查询的话,有可能会死在那儿了.分表的目的就在于此,减小数据库的负担,缩短查询时间.日常开发中我们经常会遇到大表的情况,所谓的大表是指存储了百万级乃至千万级条记录的表.这样的表过于庞大,导致数据库在查询和插入的时候耗时太长,性能低下,如果涉及联合查询的情况,性能会更加糟糕.分表和表分区的目的就是减少数据库的负担,提高数据库的效率,通常点来讲就是提高表的增删改查效率.数据库中的数据量不一定是可控的,在未进行分

  • mysql死锁和分库分表问题详解

    记录生产mysql的问题点. 业务场景与问题描述 请求一个外部接口时,每天的请求量在900万左右. 分为请求项目和回执这两个项目.请求是用来调用外部接口,回执是接收发送的接口. 在发送请求前会先插入数据库. 在请求后,如果接口返回调用失败,会更新数据库状态为失败. 如果发送成功,则会等待上游给出回执消息后,然后更新数据库状态. 而在生产运行过程中,半年出现过两次mysql导致的mq消费者堆积的问题. 问题分析 记录两次不同的原因导致的生产问题及原因分析. mysql死锁问题 查看mq聚合平台TP

  • MYSQL性能优化分享(分库分表)

    1.分库分表 很明显,一个主表(也就是很重要的表,例如用户表)无限制的增长势必严重影响性能,分库与分表是一个很不错的解决途径,也就是性能优化途径,现在的案例是我们有一个1000多万条记录的用户表members,查询起来非常之慢,同事的做法是将其散列到100个表中,分别从members0到members99,然后根据mid分发记录到这些表中,牛逼的代码大概是这样子: 复制代码 代码如下: <?php for($i=0;$i< 100; $i++ ){ //echo "CREATE TA

  • 浅谈订单重构之 MySQL 分库分表实战篇

    目录 一.目标 二.环境准备 1.基本信息 2.数据库环境准备 3.建库 & 导入分表 三.配置&实践 1.pom文件 2.常量配置 3.yml 配置 4.分库分表策略 5.dao层编写 6.单元测试 四.总结 一.目标 本文将完成如下目标: 分表数量: 256    分库数量: 4 以用户ID(user_id) 为数据库分片Key 最后测试订单创建,更新,删除, 单订单号查询,根据user_id查询列表操作. 架构图: 表结构如下: CREATE TABLE `order_XXX` (

随机推荐