Python数字图像处理基础直方图详解

目录
  • 直方图的定义
  • 直方图的性质
  • 直方图的应用
    • 图像增强
    • 图像分割
    • 图像识别
  • Python直方图的计算

直方图的定义

直方图的性质

只统计某个灰度级出现的次数,图像的大小不一样的话, 某灰度值的像素出现的次数是不一样的。
那如果我们在这基础上除以像素总个数的话,那就是某一灰度级出现的概率,那么这样的话不同大小的同一内容图像其灰度直方图是一样的。

直方图的应用

图像增强

图像分割

图像识别

Python直方图的计算

import cv2
import numpy as np
import matplotlib.pyplot as plt
img = cv2.imread('cameraman.tif',0)
img = img.flatten()
img = img.tolist()
myhist = []
for i in range(0,256):
	myhist.append(img.count(i))
plt.rcParams['font.sans-serif'] = ['SimHei']  # 用来显示中文标签
# plt.rcParams['figure.dpi'] = 100 # 每英寸点数
plt.figure()
plt.bar(x=range(0,256),height=myhist,width=0.5)
plt.title('直方图')
plt.xlabel("灰度值")
plt.ylabel("像素个数")
plt.show()

运行结果图:

plt.rcParams参数设置:

import matplotlib.pyplot as plt
plt.rcParams['font.sans-serif']=['SimHei'] # 用来显示中文标签
plt.rcParams['axes.unicode_minus']=False # 用来显示负号
plt.rcParams['figure.figsize'] = (16.0, 10.0) # 调整生成的图表最大尺寸
plt.rcParams['figure.dpi'] = 300 # 每英寸点数
调用plt.rcParams.keys()可获取rcParams的全部参数以及默认值。
例如:
'figure.dpi': 100.0   每英寸点数
'figure.figsize': [6.0, 4.0]  生成的图表最大尺寸
'font.size': 10.0  字体大小
'hist.bins': 10  直方图分箱个数
'lines.linewidth': 1.5  线宽
'lines.marker': 'None'  标记样式
'savefig.format': 'png'  保存图片的格式
'savefig.jpeg_quality': 95  图片质量
'text.color': 'black'  文本颜色
'timezone': 'UTC'  时区格式

以上就是Python数字图像处理基础直方图详解的详细内容,更多关于Python数字图像处理基础直方图的资料请关注我们其它相关文章!

(0)

相关推荐

  • python plotly绘制直方图实例详解

    计算数值出现的次数 import cufflinks as cf cf.go_offline() import numpy as np import pandas as pd set_slippage_avg_cost = [22.01, 20.98, 17.11, 9.06, 9.4, 3.65, 19.65, 7.01, 11.21, 10.3, 5.1, 23.98, 12.03, 8.13, 8.07, 9.28, 3.93, 4.23, 18.6, 8.22, 7.85, 5.39,

  • 教你利用Python玩转histogram直方图的五种方法

    直方图 直方图是一个可以快速展示数据概率分布的工具,直观易于理解,并深受数据爱好者的喜爱.大家平时可能见到最多就是 matplotlib,seaborn 等高级封装的库包,类似以下这样的绘图. 本篇博主将要总结一下使用Python绘制直方图的所有方法,大致可分为三大类(详细划分是五类,参照文末总结): 纯Python实现直方图,不使用任何第三方库 使用Numpy来创建直方图总结数据 使用matplotlib,pandas,seaborn绘制直方图 下面,我们来逐一介绍每种方法的来龙去脉. 纯Py

  • opencv python统计及绘制直方图的方法

    灰度直方图概括了图像的灰度级信息,简单的来说就是每个灰度级图像中的像素个数以及占有率,创建直方图无外乎两个步骤,统计直方图数据,再用绘图库绘制直方图. 统计直方图数据 首先要稍微理解一些与函数相关的术语,方便理解其在python3库中的应用和处理 BINS: 在上面的直方图当中,如果像素值是0到255,则需要256个值来显示直 方图.但是,如果不需要知道每个像素值的像素数目,只想知道两个像素值之间的像素点数目怎么办?例如,想知道像素值在0到15之间的像素点数目,然后是16到31...240到25

  • Python OpenCV处理图像之图像直方图和反向投影

    本文实例为大家分享了Python OpenCV图像直方图和反向投影的具体代码,供大家参考,具体内容如下 当我们想比较两张图片相似度的时候,可以使用这一节提到的技术 直方图对比 反向投影 关于这两种技术的原理可以参考我上面贴的链接,下面是示例的代码: 0x01. 绘制直方图 import cv2.cv as cv def drawGraph(ar,im, size): #Draw the histogram on the image minV, maxV, minloc, maxloc = cv.

  • python数字图像处理实现直方图与均衡化

    在图像处理中,直方图是非常重要,也是非常有用的一个处理要素. 在skimage库中对直方图的处理,是放在exposure这个模块中. 1.计算直方图 函数:skimage.exposure.histogram(image,nbins=256) 在numpy包中,也提供了一个计算直方图的函数histogram(),两者大同小义. 返回一个tuple(hist, bins_center), 前一个数组是直方图的统计量,后一个数组是每个bin的中间值 import numpy as np from s

  • Python实现直方图均衡基本原理解析

    1. 基本原理 通过一个变换,将输入图像的灰度级转换为`均匀分布`,变换后的灰度级的概率密度函数为 $$P_s(s) = \frac{1}{L-1}$$ 直方图均衡的变换为 $$s = T(r) = (L-1)\int_0^r {P_r(c)} \,{\rm d}c $$ $s$为变换后的灰度级,$r$为变换前的灰度级$P_r(r)$为变换前的概率密度函数2. 测试结果 图源自skimage 3.代码 import numpy as np def hist_equalization(input_

  • Python数字图像处理基础直方图详解

    目录 直方图的定义 直方图的性质 直方图的应用 图像增强 图像分割 图像识别 Python直方图的计算 直方图的定义 直方图的性质 只统计某个灰度级出现的次数,图像的大小不一样的话, 某灰度值的像素出现的次数是不一样的. 那如果我们在这基础上除以像素总个数的话,那就是某一灰度级出现的概率,那么这样的话不同大小的同一内容图像其灰度直方图是一样的. 直方图的应用 图像增强 图像分割 图像识别 Python直方图的计算 import cv2 import numpy as np import matp

  • python Cartopy的基础使用详解

    前言 常用地图底图的绘制一般由Basemap或者cartopy模块完成,由于Basemap库是基于python2开发的一个模块,目前已经不开发维护.故简单介绍cartopy模块的一些基础操作. 一.基础介绍 首先导入相关模块. import numpy as np import matplotlib.pyplot as plt import cartopy.crs as ccrs import cartopy.feature as cfeature from cartopy.mpl.ticker

  • Python入门之基础语法详解

    一.我的经历及目标 在学习python之前:我学习过C/C++,在学校期间做过很多的项目,已经有两年多了,算是对C/C++非常的熟悉了,精通不敢说,但是对于面向过程和面向对象有很深刻的认识,做过很多的开发,学习数据库,MFC, QT, linux下利用C/C++进行服务器的开发,QT环境下进行模拟QQ的开发- 听说python挺火的,我也来尝试一门新的语言,python和c有80%的相似性,毕竟是用C来开发的语言,但是是面向过程的一门语言,有C++的继承等相似的特性,感觉更有信心学会它了,毕竟可

  • python opencv图像处理基本操作示例详解

    目录 1.图像基本操作 ①读取图像 ②显示图像 ③视频读取 ④图像截取 ⑤颜色通道提取及还原 ⑥边界填充 ⑦数值计算 ⑧图像融合 2.阈值与平滑处理 ①设定阈值并对图像处理 ②图像平滑-均值滤波 ③图像平滑-方框滤波 ④图像平滑-高斯滤波 ⑤图像平滑-中值滤波 3.图像的形态学处理 ①腐蚀操作 ②膨胀操作 ③开运算和闭运算 4.图像梯度处理 ①梯度运算 ②礼帽与黑帽 ③图像的梯度处理 5.边缘检测 ①Canny边缘检测 1.图像基本操作 ①读取图像 ②显示图像 该函数中,name是显示窗口的名字

  • Python+OpenCV绘制灰度直方图详解

    1.直方图的概念 图像直方图是反映一个图像像素分布的统计表,其实横坐标代表了图像像素的种类,可以是灰度的,也可以是彩色的.纵坐标代表了每一种颜色值在图像中的像素总数或者占所有像素个数的百分比.图像是由像素构成,因为反映像素分布的直方图往往可以作为图像一个很重要的特征. 图像灰度直方图: 一幅图像由不同灰度值的像素组成,图像中灰度的分布情况是该图像的一个重要特征.图像的灰度直方图就描述了图像中灰度分布情况,能够很直观的展示出图像中各个灰度级所占的多少.图像的灰度直方图是灰度级的函数,描述的是图像中

  • python pandas模块基础学习详解

    Pandas类似R语言中的数据框(DataFrame),Pandas基于Numpy,但是对于数据框结构的处理比Numpy要来的容易. 1. Pandas的基本数据结构和使用 Pandas有两个主要的数据结构:Series和DataFrame.Series类似Numpy中的一维数组,DataFrame则是使用较多的多维表格数据结构. Series的创建 >>>import numpy as np >>>import pandas as pd >>>s=p

  • Python Opencv图像处理基本操作代码详解

    1.图像读取 使用cv2.imread(filepath,flags)读入图像 filepath: 读入图像完整路径(绝对路径,相对路径) flags: 读入图像标志 cv2.IMREAD_COLOR:默认参数,读入一副彩色图,忽略alpha通道:可以通过1指定 cv2.IMREAD_GRAYSCALE:读入灰度图片 也通过0指定 cv2.IMREAD_UNCHANGED:读入完整图片,包括alpha通道 import cv2 img1 = cv2.imread('C:/star.png',1)

  • python数字图像处理之高级滤波代码详解

    本文提供许多的滤波方法,这些方法放在filters.rank子模块内. 这些方法需要用户自己设定滤波器的形状和大小,因此需要导入morphology模块来设定. 1.autolevel 这个词在photoshop里面翻译成自动色阶,用局部直方图来对图片进行滤波分级. 该滤波器局部地拉伸灰度像素值的直方图,以覆盖整个像素值范围. 格式:skimage.filters.rank.autolevel(image, selem) selem表示结构化元素,用于设定滤波器. from skimage im

  • Python数字图像处理之霍夫线变换实现详解

    在图片处理中,霍夫变换主要是用来检测图片中的几何形状,包括直线.圆.椭圆等. 在skimage中,霍夫变换是放在tranform模块内,本篇主要讲解霍夫线变换. 对于平面中的一条直线,在笛卡尔坐标系中,可用y=mx+b来表示,其中m为斜率,b为截距.但是如果直线是一条垂直线,则m为无穷大,所有通常我们在另一坐标系中表示直线,即极坐标系下的r=xcos(theta)+ysin(theta).即可用(r,theta)来表示一条直线.其中r为该直线到原点的距离,theta为该直线的垂线与x轴的夹角.如

随机推荐