Python图像处理库PIL中图像格式转换的实现

  在数字图像处理中,针对不同的图像格式有其特定的处理算法。所以,在做图像处理之前,我们需要考虑清楚自己要基于哪种格式的图像进行算法设计及其实现。本文基于这个需求,使用python中的图像处理库PIL来实现不同图像格式的转换。

  对于彩色图像,不管其图像格式是PNG,还是BMP,或者JPG,在PIL中,使用Image模块的open()函数打开后,返回的图像对象的模式都是“RGB”。而对于灰度图像,不管其图像格式是PNG,还是BMP,或者JPG,打开后,其模式为“L”。

  通过之前的博客对Image模块的介绍,对于PNG、BMP和JPG彩色图像格式之间的互相转换都可以通过Image模块的open()和save()函数来完成。具体说就是,在打开这些图像时,PIL会将它们解码为三通道的“RGB”图像。用户可以基于这个“RGB”图像,对其进行处理。处理完毕,使用函数save(),可以将处理结果保存成PNG、BMP和JPG中任何格式。这样也就完成了几种格式之间的转换。同理,其他格式的彩色图像也可以通过这种方式完成转换。当然,对于不同格式的灰度图像,也可通过类似途径完成,只是PIL解码后是模式为“L”的图像。

  这里,我想详细介绍一下Image模块的convert()函数,用于不同模式图像之间的转换。

Convert()函数有三种形式的定义,它们定义形式如下:

im.convert(mode)⇒image
im.convert(“P”, **options)⇒image
im.convert(mode, matrix)⇒image

使用不同的参数,将当前的图像转换为新的模式,并产生新的图像作为返回值。

本文我们采样的图片是lena的照片:

模式“1”:

>>> from PIL import Image
>>> lena = Image.open("lena.bmp")
>>> lena.mode
'RGB'
>>> lena.getpixel((0,0))
(226, 137, 125)
>>> lena_1 = lena.convert("1")
>>> lena_1.mode
'1'
>>> lena_1.size
(512, 512)
>>> lena_1.getpixel((0,0))
>>> lena_1.getpixel((10,10))
>>> lena_1.getpixel((10,120))
>>> lena_1.getpixel((130,120))
>>> lena_1.show()

结果:

模式“L”:

模式“L”为灰色图像,它的每个像素用8个bit表示,0表示黑,255表示白,其他数字表示不同的灰度。在PIL中,从模式“RGB”转换为“L”模式是按照下面的公式转换的:

L = R * 299/1000 + G * 587/1000+ B * 114/1000

下面我们将lena图像转换为“L”图像。

>>> lena_L = lena.convert("L")
>>> lena_L.mode
'L'
>>> lena_L.size
(512, 512)
>>> lena_L.getpixel((0,0))
>>> lena.getpixel((0,0))
(226, 137, 125)
>>> lena_L.show()
>>> lena_L.save("lena_l.bmp")
>>>

对于第一个像素点,原始图像lena为(197, 111, 78),其转换为灰色值为:

197 *299/1000 + 111 * 587/1000 + 78 * 114/1000= 132.952,PIL中只取了整数部分,即为132。

转换后的图像lena_L如下:

模式P:

模式“P”为8位彩色图像,它的每个像素用8个bit表示,其对应的彩色值是按照调色板查询出来的。

下面我们使用默认的调色板将lena图像转换为“P”图像。

example:

>>> lena_P = lena.convert("P")
>>> lena_P.mode
'P'
>>> lena_P.getpixel((0,0))

结果:

模式“RGBA”:

  模式“RGBA”为32位彩色图像,它的每个像素用32个bit表示,其中24bit表示红色、绿色和蓝色三个通道,另外8bit表示alpha通道,即透明通道。

下面我们将模式为“RGB”的lena图像转换为“RGBA”图像。

>>> lena_rgba = lena.convert("RGBA")
>>>
>>>
>>>
>>> lena_rgba.mode
'RGBA'
>>> lena_rgba.getpixel((0,0))
(226, 137, 125, 255)
>>> lena_rgba.getpixel((0,1))
(226, 137, 125, 255)
>>> lena_rgba.show()

模式“CMYK”:

  模式“CMYK”为32位彩色图像,它的每个像素用32个bit表示。模式“CMYK”就是印刷四分色模式,它是彩色印刷时采用的一种套色模式,利用色料的三原色混色原理,加上黑色油墨,共计四种颜色混合叠加,形成所谓“全彩印刷”。

四种标准颜色是:C:Cyan =青色,又称为‘天蓝色'或是‘湛蓝'M:Magenta =品红色,又称为‘洋红色';Y:Yellow =黄色;K:Key Plate(blacK) =定位套版色(黑色)。

下面我们将模式为“RGB”的lena图像转换为“CMYK”图像。

>>> lena_cmyk = lena.convert("CMYK")
>>> lena_cmyk.mode
'CMYK'
>>> lena_cmyk.getpixel((0,0))
(29, 118, 130, 0)
>>> lena_cmyk.getpixel((0,1))
(29, 118, 130, 0)
>>> lena_cmyk.show()

从实例中可以得知PIL中“RGB”转换为“CMYK”的公式如下:

C = 255 - R
M = 255 - G
Y = 255 - B
K = 0

由于该转换公式比较简单,转换后的图像颜色有些失真。

转换后的图像lena_cmyk如下:

模式“YCbCr”:

  模式“YCbCr”为24位彩色图像,它的每个像素用24个bit表示。YCbCr其中Y是指亮度分量,Cb指蓝色色度分量,而Cr指红色色度分量。人的肉眼对视频的Y分量更敏感,因此在通过对色度分量进行子采样来减少色度分量后,肉眼将察觉不到的图像质量的变化。

模式“RGB”转换为“YCbCr”的公式如下:

Y= 0.257*R+0.504*G+0.098*B+16
Cb = -0.148*R-0.291*G+0.439*B+128
Cr = 0.439*R-0.368*G-0.071*B+128

下面我们将模式为“RGB”的lena图像转换为“YCbCr”图像。

>>> lena_ycbcr = lena.convert("YCbCr")
>>> lena_ycbcr.mode
'YCbCr'
>>> lena_ycbcr.getpixel((0,0))
(162, 107, 173)
>>> lena.getpixel((0,0))
(226, 137, 125)
>>>

按照公式,Y =0.257*197+0.564*111+0.098*78+16= 136.877

Cb=-0.148*197-0.291*111+0.439*78+128= 100.785
Cr = 0.439*197-0.368*111-0.071*78+128 = 168.097

由此可见,PIL中并非按照这个公式进行“RGB”到“YCbCr”的转换。

转换后的图像lena_ycbcr如下:

模式“I”

模式“I”为32位整型灰色图像,它的每个像素用32个bit表示,0表示黑,255表示白,(0,255)之间的数字表示不同的灰度。在PIL中,从模式“RGB”转换为“I”模式是按照下面的公式转换的:

I = R * 299/1000 + G * 587/1000 + B * 114/1000

下面我们将模式为“RGB”的lena图像转换为“I”图像。

>>> lena_I = lena.convert("I")
>>> lena_I.mode
'I'
>>> lena_I.getpixel((0,0))
>>> lena_I.getpixel((0,1))
>>> lena_L = lena.convert("L")
>>> lena_L.getpixel((0,0))
>>> lena_L.getpixel((0,1))

从实验的结果看,模式“I”与模式“L”的结果是完全一样,只是模式“L”的像素是8bit,而模式“I”的像素是32bit。 

模式“F”

模式“F”为32位浮点灰色图像,它的每个像素用32个bit表示,0表示黑,255表示白,(0,255)之间的数字表示不同的灰度。在PIL中,从模式“RGB”转换为“F”模式是按照下面的公式转换的:

F = R * 299/1000+ G * 587/1000 + B * 114/1000

下面我们将模式为“RGB”的lena图像转换为“F”图像。

>>> lena_F = lena.convert("F")
>>> lena_F.mode
'F'
>>> lena_F.getpixel((0,0))
162.2429962158203
>>> lena_F.getpixel((0,1))
162.2429962158203
>>>

模式“F”与模式“L”的转换公式是一样的,都是RGB转换为灰色值的公式,但模式“F”会保留小数部分,如实验中的数据.

以上就是Python图像处理库PIL中图像格式转换的实现的详细内容,更多关于PIL 图像格式转换的资料请关注我们其它相关文章!

(0)

相关推荐

  • python生成tensorflow输入输出的图像格式的方法

    TensorFLow能够识别的图像文件,可以通过numpy,使用tf.Variable或者tf.placeholder加载进tensorflow:也可以通过自带函数(tf.read)读取,当图像文件过多时,一般使用pipeline通过队列的方法进行读取.下面我们介绍两种生成tensorflow的图像格式的方法,供给tensorflow的graph的输入与输出. import cv2 import numpy as np import h5py height = 460 width = 345 w

  • Python生态圈图像格式转换问题(推荐)

    在Python生态圈里,最常用的图像库是PIL--尽管已经被后来的pillow取代,但因为pillow的API几乎完全继承了PIL,所以大家还是约定俗成地称其为PIL.除PIL之外,越来越多的程序员习惯使用openCV来处理图像.另外,在GUI库中,也有各自定义的图像处理机制,比如wxPyton,定义了wx.Image做为图像处理类,定义了wx.Bitmap做为图像显示类. 下图梳理出了PIL读写图像文件.cv2读写图像文件.PIL对象和cv2对象互转.PIL对象和wx.Image对象互转.以及

  • Python图像处理库PIL中图像格式转换的实现

    在数字图像处理中,针对不同的图像格式有其特定的处理算法.所以,在做图像处理之前,我们需要考虑清楚自己要基于哪种格式的图像进行算法设计及其实现.本文基于这个需求,使用python中的图像处理库PIL来实现不同图像格式的转换. 对于彩色图像,不管其图像格式是PNG,还是BMP,或者JPG,在PIL中,使用Image模块的open()函数打开后,返回的图像对象的模式都是"RGB".而对于灰度图像,不管其图像格式是PNG,还是BMP,或者JPG,打开后,其模式为"L". 通

  • Python图像处理库PIL详细使用说明

    一. 简介 1. 基本介绍 Pillow 是 Python 中较为基础的图像处理库,主要用于图像的基本处理,比如裁剪图像.调整图像大小和图像颜色处理等.与 Pillow 相比,OpenCV 和 Scikit-image 的功能更为丰富,所以使用起来也更为复杂,主要应用于机器视觉.图像分析等领域,比如众所周知的“人脸识别”应用 . 2. 特点 支持格式繁多 Pillow 支持广泛的图像格式,比如 "jpeg","png","bmp","g

  • Python图像处理库PIL的ImageFont模块使用介绍

    ImageFont模块定义了相同名称的类,即ImageFont类.这个类的实例存储bitmap字体,用于ImageDraw类的text()方法. PIL使用自己的字体文件格式存储bitmap字体.用户可以使用pilfont工具包将BDF和PCF字体描述器(Xwindow字体格式)转换为这种格式. 从版本1.1.4开始,PIL可以配置是否支持TrueType和OpenType字体(和FreeType库支持其他的字体格式一样).对于更早的版本,只在imToolkit包中支持TrueType字体. T

  • Python图像处理库PIL的ImageGrab模块介绍详解

    ImageGrab模块用于将当前屏幕的内容或者剪贴板上的内容拷贝到PIL图像内存. 当前版本只支持windows系统. 一.ImageGrab模块的函数 1.  Grab 定义:ImageGrab.grab()⇒ image ImageGrab.grab(bbox) ⇒ image 含义:(New in 1.1.3)抓取当前屏幕的快照,返回一个模式为"RGB"的图像.参数边界框用于限制只拷贝当前屏幕的一部分区域. 例子: >>> from PIL importImag

  • Python图像处理库PIL的ImageDraw模块介绍详解

    ImageDraw模块提供了图像对象的简单2D绘制.用户可以使用这个模块创建新的图像,注释或润饰已存在图像,为web应用实时产生各种图形. PIL中一个更高级绘图库见The aggdraw Module 一.ImageDraw模块的概念 1.  Coordinates 绘图接口使用和PIL一样的坐标系统,即(0,0)为左上角. 2.  Colours 为了指定颜色,用户可以使用数字或者元组,对应用户使用函数Image.new或者Image.putpixel.对于模式为"1","

  • Python图像处理库PIL的ImageFilter模块使用介绍

    ImageFilter模块提供了滤波器相关定义:这些滤波器主要用于Image类的filter()方法. 一.ImageFilter模块所支持的滤波器 当前的PIL版本中ImageFilter模块支持十种滤波器: 1.  BLUR ImageFilter.BLUR为模糊滤波,处理之后的图像会整体变得模糊. 例子: >>> from PIL importImageFilter >>> im02 =Image.open("D:\\Code\\Python\\test

  • Python图像处理库PIL的ImageEnhance模块使用介绍

    ImageEnhance模块提供了一些用于图像增强的类. 一.ImageEnhance模块的接口 所有的增强类都实现了一个通用的接口,包括一个方法: enhancer.enhance(factor) ⇒ image 该方法返回一个增强过的图像.变量factor是一个浮点数,控制图像的增强程度.变量factor为1将返回原始图像的拷贝:factor值越小,颜色越少(亮度,对比度等),更多的价值.对变量facotr没有限制. 二.ImageEnhance模块的Color类 颜色增强类用于调整图像的颜

  • 详解Python图像处理库Pillow常用使用方法

    PIL(Python Image Library)是python的第三方图像处理库,但是由于其强大的功能与众多的使用人数,几乎已经被认为是python官方图像处理库了. 其官方主页为:PIL. PIL历史悠久,原来是只支持python2.x的版本的,后来出现了移植到python3的库pillow,pillow号称是friendly fork for PIL,其功能和PIL差不多,但是支持python3. PIL(Python Imaging Library)是Python一个强大方便的图像处理库

  • 推荐五个常用的python图像处理库

    目录 1. 引言 2. Pillow库 3. Numpy库 4. Scipy库 5. Opencv库 6. Pgmagick库 7. 总结 1. 引言 Python目前是世界上使用最多的编程语言之一.它能够以更少的工作量和更少的代码行数来完成许多事情.它还可以使用很少的代码行来方便地编辑和创建图像.本文重点介绍,在图像处理领域,我们最常使用的一些Python开源库. 2. Pillow库 Pillow是Python中常用的图像处理库之一.它提供了许多操作图像的函数,如调整大小.滤波操作等.这是P

随机推荐