Python识别处理照片中的条形码

最近一直在玩数独,突发奇想实现图像识别求解数独,输入到输出平均需要0.5s。

整体思路大概就是识别出图中数字生成list,然后求解。

输入输出demo

数独采用的是微软自带的Microsoft sudoku软件随便截取的图像,如下图所示:

经过程序求解后,得到的结果如下图所示:

def getFollow(varset, terminalset, first_dic, production_list):
    follow_dic = {}
    done = {}
    for var in varset:
        follow_dic[var] = set()
        done[var] = 0
    follow_dic["A1"].add("#")
    # for var in terminalset:
    #     follow_dic[var]=set()
    #     done[var] = 0
    for var in follow_dic:
        getFollowForVar(var, varset, terminalset, first_dic, production_list, follow_dic, done)
    return follow_dic
  
  
def getFollowForVar(var, varset, terminalset, first_dic, production_list, follow_dic, done):
    if done[var] == 1:
        return
    for production in production_list:
        if var in production.right:
            ##index这里在某些极端情况下有bug,比如多次出现var,index只会返回最左侧的
            if production.right.index(var) != len(production.right) - 1:
                follow_dic[var] = first_dic[production.right[production.right.index(var) + 1]] | follow_dic[var]
            # 没有考虑右边有非终结符但是为null的情况
            if production.right[len(production.right) - 1] == var:
                if var != production.left[0]:
                    # print(var, "吸纳", production.left[0])
                    getFollowForVar(production.left[0], varset, terminalset, first_dic, production_list, follow_dic,
                                    done)
                    follow_dic[var] = follow_dic[var] | follow_dic[production.left[0]]
  
    done[var] = 1

程序具体流程

程序整体流程如下图所示:

读入图像后,根据求解轮廓信息找到数字所在位置,以及不包含数字的空白位置,提取数字信息通过KNN识别,识别出数字;无数字信息的在list中置0;生成未求解数独list,之后求解数独,将信息在原图中显示出来。

def initProduction():
    production_list = []
    production = Production(["A1"], ["A"], 0)
    production_list.append(production)
    production = Production(["A"], ["E", "I", "(", ")", "{", "D", "}"], 1)
    production_list.append(production)
    production = Production(["E"], ["int"], 2)
    production_list.append(production)
    production = Production(["E"], ["float"], 3)
    production_list.append(production)
    production = Production(["D"], ["D", ";", "B"], 4)
    production_list.append(production)
    production = Production(["B"], ["F"], 5)
    production_list.append(production)
    production = Production(["B"], ["G"], 6)
    production_list.append(production)
    production = Production(["B"], ["M"], 7)
    production_list.append(production)
    production = Production(["F"], ["E", "I"], 8)
    production_list.append(production)
    production = Production(["G"], ["I", "=", "P"], 9)
    production_list.append(production)
    production = Production(["P"], ["K"], 10)
    production_list.append(production)
    production = Production(["P"], ["K", "+", "P"], 11)
    production_list.append(production)
    production = Production(["P"], ["K", "-", "P"], 12)
    production_list.append(production)
    production = Production(["I"], ["id"], 13)
    production_list.append(production)
    production = Production(["K"], ["I"], 14)
    production_list.append(production)
    production = Production(["K"], ["number"], 15)
    production_list.append(production)
    production = Production(["K"], ["floating"], 16)
    production_list.append(production)
    production = Production(["M"], ["while", "(", "T", ")", "{", "D", ";", "}"], 18)
    production_list.append(production)
    production = Production(["N"], ["if", "(", "T", ")", "{", "D",";", "}", "else", "{", "D", ";","}"], 19)
    production_list.append(production)
    production = Production(["T"], ["K", "L", "K"], 20)
    production_list.append(production)
    production = Production(["L"], [">"], 21)
    production_list.append(production)
    production = Production(["L"], ["<"], 22)
    production_list.append(production)
    production = Production(["L"], [">="], 23)
    production_list.append(production)
    production = Production(["L"], ["<="], 24)
    production_list.append(production)
    production = Production(["L"], ["=="], 25)
    production_list.append(production)
    production = Production(["D"], ["B"], 26)
    production_list.append(production)
    production = Production(["B"], ["N"], 27)
    production_list.append(production)
    return production_list
 
 
source = [[5, "int", " 关键字"], [1, "lexicalanalysis", " 标识符"], [13, "(", " 左括号"], [14, ")", " 右括号"], [20, "{", " 左大括号"],
          [4, "float", " 关键字"], [1, "a", " 标识符"], [15, ";", " 分号"], [5, "int", " 关键字"], [1, "b", " 标识符"],
          [15, ";", " 分号"], [1, "a", " 标识符"], [12, "=", " 赋值号"], [3, "1.1", " 浮点数"], [15, ";", " 分号"], [1, "b", " 标识符"],
          [12, "=", " 赋值号"], [2, "2", " 整数"], [15, ";", " 分号"], [8, "while", "  关键字"], [13, "(", " 左括号"],
          [1, "b", " 标识符"], [17, "<", " 小于号"], [2, "100", " 整数"], [14, ")", " 右括号"], [20, "{", " 左大括号"],
          [1, "b", " 标识符"], [12, "=", " 赋值号"], [1, "b", " 标识符"], [9, "+", " 加 号"], [2, "1", " 整数"], [15, ";", " 分号"],
          [1, "a", " 标识符"], [12, "=", " 赋值号"], [1, "a", " 标识符"], [9, "+", " 加号"], [2, "3", " 整数"], [15, ";", " 分号"],
          [21, "}", " 右大括号"], [15, ";", " 分号"], [6, "if", " 关键字"], [13, "(", " 左括号"], [1, "a", " 标识符"],
          [16, ">", " 大于号"], [2, "5", " 整数"], [14, ")", " 右括号"], [20, "{", " 左大括号"], [1, "b", " 标识符"],
          [12, "=", " 赋值号"], [1, "b", " 标识符"], [10, "-", " 减号"], [2, "1", " 整数"], [15, ";", " 分号"], [21, "}", " 右大括号"],
          [7, "else", " 关键字"], [20, "{", " 左大括号"], [1, "b", " 标识符"], [12, "=", " 赋值号"], [1, "b", " 标识符"],
          [9, "+", " 加号"], [2, "1", " 整数"], [15, ";", " 分号"], [21, "}", " 右大括号"], [21, "}", " 右大括号"]]

以上就是Python识别处理照片中的条形码的详细内容,更多关于python 识别条形码的资料请关注我们其它相关文章!

(0)

相关推荐

  • python利用elaphe制作二维条形码实现代码

    手机上的二维码识别程序已经做的很好了,"我查查"用起来很不错的 我搜集了几个二维条码生成网站: http://www.morovia.com/free-online-barcode-generator/qrcode-maker.php http://qrencode.sinaapp.com/ http://www.mayacode.com/ 作为一个程序猿,我们也要懂得如何制作二维条形码 python的elaphe模块帮我们解决了问题 复制代码 代码如下: from elaphe im

  • 3行Python代码实现图像照片抠图和换底色的方法

    1.项目背景 对于不会PS的小伙伴,抠图是一个难度系数想当高的活儿,某宝照片抠图和证件照换底色均价都是5元RMB,所以今天要介绍的这款神工具,只要 3 行代码 5 秒钟就可以完成高精度抠图,甚至都不用会代码,点两下鼠标就完成了. 这里介绍Remove Image Background工具,它基于 Python.Ruby 和深度学习技术开发,通过强大的 AI 人工智能算法实现自动识别出前景主体与背景图,分分钟秒秒钟完成抠图. 这款抠图工具有两种简单方式:在线抠图和Python代码抠图,介绍如下.

  • 通过python扫描二维码/条形码并打印数据

    需提前安装好pyzbar和opencv-python库(博主的电脑安装opencv-python库比较麻烦,但大部分都不会出现该问题) 安装方法:打开命令框输入 pip install pyzbar/opencv- python 接下来介绍代码 #首先导入本次所需要的库,最后一个csv是Python自带的csv表格操作库,这里我们需要把我们扫到的二维码信息都存入csv表格里. import cv2 from pyzbar import pyzbar import csv #然后我们设置一个变量,

  • Python 利用OpenCV给照片换底色的示例代码

    OpenCV的全称是:Open Source Computer Vision Library.OpenCV是一个基于BSD许可(开源)发行的跨平台计算机视觉库,可以运行在Linux.Windows和Mac OS操作系统上.它轻量级而且高效--由一系列 C 函数和少量 C++ 类构成,同时提供了Python.Ruby.MATLAB等语言的接口,实现了图像处理和计算机视觉方面的很多通用算法.相比于PIL库来说OpenCV更加强大, 可以做更多更复杂的应用,比如人脸识别等. 1. 读入并显示图片 im

  • python批量生成条形码的示例

    在工作中,有时会遇见需要将数字转换为条码的问题,每次都需要打开条码转换的网站,一次次的转换后截图,一两个还行,但是当需要转换的数量较多时,就会显得特别麻烦,弄不好还会遗漏或者重复,为了解决这个问题,使用python写了以下脚本,用来解决此问题 1.安装python-barcode库和pillow库 需要导入的python库 import barcode from barcode.writer import ImageWriter 2.将需要转换的条形码数据保存到同级目录下的 EAN.txt 内

  • 使用python写的opencv实时监测和解析二维码和条形码

    今天,我实现了一个很有趣的demo,它可以在视频里找到并解析二维码,然后把解析的内容实时在屏幕上显示出来. 然后我们直入主题,首先你得确保你装了opencv,python,zbar等环境.然后这个教程对于学过opencv的人可能更好理解,但是没学过也无妨,到时候也可以直接用. 比如我的电脑上的环境是opencv2.4.x,python2.7,和最新的zbar,在Ubuntu 12.12的系统下运行的 假设你的opencv已经安装好了,那么我们就可以安装zbar 你可以先更新一下 sudo apt

  • Python识别快递条形码及Tesseract-OCR使用详解

    识别快递单号 这次跟老师做项目,这项目大概是流水线上识别快递上的快递单号.首先我尝试了解条形码的基本知识 百度百科:条形码 条形码(barcode)是将宽度不等的多个黑条和空白,按照一定的编码规则排列,用以表达一组信息的图形标识符.常见的条形码是由反射率相差很大的黑条(简称条)和白条(简称空)排成的平行线图案.条形码可以标出物品的生产国.制造厂家.商品名称.生产日期.图书分类号.邮件起止地点.类别.日期等许多信息,因而在商品流通.图书管理.邮政管理.银行系统等许多领域都得到广泛的应用. 条形码有

  • 如何使用 Python 读取文件和照片的创建日期

    本文记录,如何使用 Python 来抓取,图片或者文件的,创建日期,修改日期 1. 读取照片创建日期(._getexif()) from PIL import Image imgPath = 'C:/Users/xx/Desktop/xxxxx.jpg' imge = Image.open(imgPath) exif_data = imge._getexif() ImageDate = exif_data[36867] # 或者 ImageDate = exif_data[306] print(

  • Python之ReportLab绘制条形码和二维码的实例

    条形码和二维码 #引入所需要的基本包 from reportlab.pdfgen import canvas from reportlab.graphics.barcode import code39, code128, code93 from reportlab.graphics.barcode import eanbc, qr, usps from reportlab.graphics.shapes import Drawing from reportlab.lib.units import

  • python3转换code128条形码的方法

    这年头如果用 python3 做条形码的,肯定(推荐)用 pystrich . 这货官方文档貌似都没写到支持 Code128 ,但是居然有这个类( Code128Encoder ).... 一些喷墨打印机,如果质量差一点的话,喷出来的条码,会沾到一起,不好识别. 而用 pystrich 的话,会发觉宽度无法调节. 于是想到了用 条形码字体 来自己控制大小,找是找到字库了,但是你会发觉,你生成的东西,无法被扫描识别, 那是因为,这东西得转换后,才能打印啊... 经过千辛万苦,终于找到一篇文章说到转

随机推荐