Python实现批量采集商品数据的示例详解
目录
- 本次目的
- 知识点
- 开发环境
- 代码
本次目的
python批量采集某商品数据
知识点
requests 发送请求
re 解析网页数据
json 类型数据提取
csv 表格数据保存
开发环境
python 3.8
pycharm
requests
代码
导入模块
import json import random import time import csv import requests import re import pymysql
核心代码
# 连接数据库 def save_sql(title, pic_url, detail_url, view_price, item_loc, view_sales, nick): count = pymysql.connect( host='xxx.xxx.xxx.xxx', # 数据库地址 port=3306, # 数据库端口 user='xxxx', # 数据库账号 password='xxxx', # 数据库密码 db='xxxx' # 数据库表名 ) # 创建数据库对象 db = count.cursor() # 写入sql sql = f"insert into goods(title, pic_url, detail_url, view_price, item_loc, view_sales, nick) values ('{title}', '{pic_url}', '{detail_url}', {view_price}, '{item_loc}', '{view_sales}', '{nick}')" # 执行sql db.execute(sql) # 保存修改内容 count.commit() db.close() headers = { 'cookie': 'miid=4137864361077413341; tracknick=%5Cu5218%5Cu6587%5Cu9F9978083283; thw=cn; hng=CN%7Czh-CN%7CCNY%7C156; cna=MNI4GicXYTQCAa8APqlAWWiS; enc=%2FWC5TlhZCGfEq7Zm4Y7wyNToESfZVxhucOmHkanuKyUkH1YNHBFXacrDRNdCFeeY9y5ztSufV535NI0AkjeX4g%3D%3D; t=ad15767ffa6febb4d2a8709edebf63d3; lgc=%5Cu5218%5Cu6587%5Cu9F9978083283; sgcookie=E100EcWpAN49d4Uc3MkldEc205AxRTa81RfV4IC8X8yOM08mjVtdhtulkYwYybKSRnCaLHGsk1mJ6lMa1TO3vTFmr7MTW3mHm92jAsN%2BOA528auARfjf2rnOV%2Bx25dm%2BYC6l; uc3=nk2=ogczBg70hCZ6AbZiWjM%3D&vt3=F8dCvCogB1%2F5Sh1kqHY%3D&lg2=Vq8l%2BKCLz3%2F65A%3D%3D&id2=UNGWOjVj4Vjzwg%3D%3D; uc4=nk4=0%40oAWoex2a2MA2%2F2I%2FjFnivZpTtTp%2F2YKSTg%3D%3D&id4=0%40UgbuMZOge7ar3lxd0xayM%2BsqyxOW; _cc_=W5iHLLyFfA%3D%3D; _m_h5_tk=ac589fc01c86be5353b640607e791528_1647451667088; _m_h5_tk_enc=7d452e4e140345814d5748c3e31fc355; xlly_s=1; x5sec=7b227365617263686170703b32223a223264393234316334363365353038663531353163633366363036346635356431434c61583635454745506163324f2f6b2b2b4b6166686f4d4d7a45774e7a4d794d6a59324e4473784d4b6546677037382f2f2f2f2f77453d227d; JSESSIONID=1F7E942AC30122D1C7DBA22C429521B9; tfstk=cKKGBRTY1F71aDbHPcs6LYjFVa0dZV2F6iSeY3hEAYkCuZxFizaUz1sbK1hS_r1..; l=eBEVp-O4gnqzSzLbBOfwnurza77OIIRAguPzaNbMiOCPO75p5zbNW60wl4L9CnGVhsTMR3lRBzU9BeYBqo44n5U62j-la1Hmn; isg=BDw8SnVxcvXZcEU4ugf-vTadDdruNeBfG0WXdBa9WicK4dxrPkd97hHTxQmZqRi3', 'referer': 'https://s.taobao.com/search?q=%E4%B8%9D%E8%A2%9C&imgfile=&js=1&stats_click=search_radio_all%3A1&initiative_id=staobaoz_20220323&ie=utf8&bcoffset=1&ntoffset=1&p4ppushleft=2%2C48&s=', 'sec-ch-ua': '" Not A;Brand";v="99", "Chromium";v="99", "Google Chrome";v="99"', 'sec-ch-ua-mobile': '?0', 'sec-ch-ua-platform': '"Windows"', 'sec-fetch-dest': 'document', 'sec-fetch-mode': 'navigate', 'sec-fetch-site': 'same-origin', 'sec-fetch-user': '?1', 'upgrade-insecure-requests': '1', 'user-agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/99.0.4844.82 Safari/537.36', } with open('淘宝.csv', mode='a', encoding='utf-8', newline='') as f: csv_writer = csv.writer(f) csv_writer.writerow(['title', 'pic_url', 'detail_url', 'view_price', 'item_loc', 'view_sales', 'nick']) for page in range(1, 101): url = f'https://s.taobao.com/search?q=%E4%B8%9D%E8%A2%9C&imgfile=&js=1&stats_click=search_radio_all%3A1&initiative_id=staobaoz_20220323&ie=utf8&bcoffset=1&ntoffset=1&p4ppushleft=2%2C48&s={44*page}' response = requests.get(url=url, headers=headers) json_str = re.findall('g_page_config = (.*);', response.text)[0] json_data = json.loads(json_str) auctions = json_data['mods']['itemlist']['data']['auctions'] for auction in auctions: try: title = auction['raw_title'] pic_url = auction['pic_url'] detail_url = auction['detail_url'] view_price = auction['view_price'] item_loc = auction['item_loc'] view_sales = auction['view_sales'] nick = auction['nick'] print(title, pic_url, detail_url, view_price, item_loc, view_sales, nick) save_sql(title, pic_url, detail_url, view_price, item_loc, view_sales, nick) with open('淘宝.csv', mode='a', encoding='utf-8', newline='') as f: csv_writer = csv.writer(f) csv_writer.writerow([title, pic_url, detail_url, view_price, item_loc, view_sales, nick]) except: pass time.sleep(random.randint(3, 5))
到此这篇关于Python实现批量采集商品数据的示例详解的文章就介绍到这了,更多相关Python采集商品数据内容请搜索我们以前的文章或继续浏览下面的相关文章希望大家以后多多支持我们!
赞 (0)