C++核心编程之内存分区详解

目录
  • 1、内存分区模型:
  • 2、代码区:
  • 3、全局区:
  • 4、小结:
  • 5、代码演示:
  • 6、运行结果:
  • 总结

1、内存分区模型:

C++程序在执行时,将内存大方向划分成4个区域

(1)代码区:存放安徽念书体的二进制代码,由操作系统进行管理的

(2)全局区:存放全局变量和静态变量以及常量

(3)栈区:由编译器自动分配释放,存放函数的参数值,局部变量等

(4)堆区:由程序员分配和释放,若程序员不释放,程序结束时由操作系统回收

内存四区意义:不同区域存放的数据,赋予不同的生命周期,给我们更大的灵活编程

2、代码区:

在程序编译后,生成了exe可执行程序,未执行该程序前分为两个区域

代码区:

(1)存放CPU执行的机器指令(二进制的机器指令)

(2)代码区是共享的,共享的目的是对于频繁被执行的程序,只需要在内存中有一份代码即可

(3)代码区是只读的,使其只读的原因是防止程序意外地修改了它的指令

3、全局区:

(1)全局变量和静态变量存放在此

(2)全局区还包括了常量区,字符串常量和其他常量也存放在此(字符串常量和const修饰的全局变量)

(3)该区域的数据在程序结束后由操作系统释放(不是由我们来控制的)

不在全局区中的:

1、局部变量

2、const修饰的局部变量(局部常量)

4、小结:

1.C++中在程序运行前分为全局区和代码区

2.代码区特点是共享和只读

3.全局区中存放全局变量、静态变量、常量

4.常量区中存放const修饰的全局常量和字符串常量

5、代码演示:

//程序的内存模型-内存四区-全局区
#include <iostream>
using namespace std;
//1 全局变量
int g_a = 10;
int g_b = 10;
//const修饰的全局变量,全局常量
const int c_g_a = 10;
const int c_g_b = 10;
int main() {
    //2 创建普通局部变量
    int a = 10;
    int b = 10;
    cout << "The address of local variable a is: " << &a << endl;
    cout << "The address of local variable b is: " << &b << endl;
    cout << "Global variable g_a's address is: " << &g_a << endl;
    cout << "Global variable g_b's address is: " << &g_b << endl;
    //3 静态变量 在普通变量前面加static,属于静态变量
    static int s_a = 10;
    static int s_b = 10;
    cout << "The address of static variable s_a is: " << &s_a << endl;
    cout << "The address of static variable s_b is: " << &s_b << endl;
    //4 常量
    //4.1 字符串常量
    cout << "The address of the string constant is: " << &"Hello World" << endl;
    //4.2 const修饰的变量
    //4.2.1 const修饰的全局变量
    cout << "Global constant c_g_a's address is: " << &c_g_a << endl;
    cout << "Global constant c_g_b's address is: " << &c_g_b << endl;
    //4.2.2 const修饰局部变量
    const int c_l_a = 10;
    const int c_l_b = 10;
    cout << "Local constant c_l_a's address is: " << &c_l_a << endl;
    cout << "Local constant c_l_b's address is: " << &c_l_b << endl;
    return 0;
}

6、运行结果:

总结

本篇文章就到这里了,希望能够给你带来帮助,也希望您能够多多关注我们的更多内容!

(0)

相关推荐

  • C++中的内存分区介绍

    C++的内存划分为栈区.堆区.全局区/静态区.字符串常量和代码区. 这里去掉自由存储区,增加了代码区,理由会在下面讲到. 栈区:由系统进行内存的管理. 说明:主要存放函数的参数以及局部变量.栈区由系统进行内存管理,在函数完成执行,系统自行释放栈区内存,不需要用户管理.整个程序的栈区的大小可以在编译器中由用户自行设定,默认的栈区大小为3M. 全局/静态区:全局.静态数据存放在一起的,初始化的全局变量和静态变量是在一起的.未初始化的全局变量和静态变量是在相邻的空间中. 说明:全局变量和静态全局变量的

  • C++程序的五大内存分区实例详解

    目录 1.栈内存区 1.1.调用函数时通过栈来传递函数的参数值 1.2.线程占用的栈内存是有上限的 2.堆内存区 3.全局/静态内存区 4.文字常量区 5.程序代码区 C++程序在运行时所占用的内存区域,一般可分为栈内存区.堆内存区.全局/静态内存区.文字常量内存区及程序代码区5大分区: 下面使用日常开发中的编程实例,详细介绍一下这5个分区,以便大家能更深刻的理解这5大内存分区. 1.栈内存区 栈内存区是我们用的最多的分区,只要有函数的地方都会使用到这个分区.栈分区是用来存放函数参数及函数局部变

  • C++ 内存分区模型的使用(代码区、全局区、栈区、堆区、new)

    内存分区模型 1 代码区 2 全局区 // 全局变量.静态变量.常量 #include <iostream> using namespace std; // 全局变量.静态变量.常量 //全局变量 int g_a=10; int g_b=10; //const修饰的全局常量 const int c_g_a = 10; const int c_g_b = 10; int main() { //创建普通局部变量 int a = 10; int b = 10; cout << "

  • C++ 面向对象程序设计--内存分区详解

    目录 一.分区的意义 二.代码区 1.定义 2.特点 三.全局区 1.定义 2.特点 3.相关代码 1)全局变量 2)静态变量 四.栈区--程序运行后 1.定义 2.相关代码 五.堆区--运行后 1.定义 2.相关代码和运行结果 总结 一.分区的意义 在讲分区前,先谈谈内存分区的意义,也就是为什么程序要进行分区? 笔者认为这是为了编程的灵活性,因为将内存分区后,不同区域的内存,相关的数据就有的不同的生命周期.以笔者之前的一篇算法复杂度的blog中提到栈帧空间为例,在此就是指栈区,而栈区多指非ma

  • C++核心编程之内存分区详解

    目录 1.内存分区模型: 2.代码区: 3.全局区: 4.小结: 5.代码演示: 6.运行结果: 总结 1.内存分区模型: C++程序在执行时,将内存大方向划分成4个区域 (1)代码区:存放安徽念书体的二进制代码,由操作系统进行管理的 (2)全局区:存放全局变量和静态变量以及常量 (3)栈区:由编译器自动分配释放,存放函数的参数值,局部变量等 (4)堆区:由程序员分配和释放,若程序员不释放,程序结束时由操作系统回收 内存四区意义:不同区域存放的数据,赋予不同的生命周期,给我们更大的灵活编程 2.

  • C++核心编程之类和对象详解

    目录 1.封装 1.1封装的意义 封装意义一: 封装意义二 1.2 struct 和 class 区别 1.3 成员属性设置为私有 总结 C++面向对象三大特性:封装.继承.多态 1.封装 1.1封装的意义 将属性和行为作为一个整体 将属性和行为加以权限控制 封装意义一: 语法:class 类名{ 访问权限: 属性 / 行为 }; //实例1 #define _CRT_SECURE_NO_WARNINGS 1 //求圆的周长 #include<iostream> using namespace

  • Python面向对象编程repr方法示例详解

    目录 为什么要讲 __repr__ 重写 __repr__ 方法 str() 和 repr() 的区别 为什么要讲 __repr__ 在 Python 中,直接 print 一个实例对象,默认是输出这个对象由哪个类创建的对象,以及在内存中的地址(十六进制表示) 假设在开发调试过程中,希望使用 print 实例对象时,输出自定义内容,就可以用 __repr__ 方法了 或者通过 repr() 调用对象也会返回 __repr__ 方法返回的值 是不是似曾相识....没错..和 __str__ 一样的

  • Java异步编程工具Twitter Future详解

    目录 异步编程(Twitter Future) 为啥要异步 基本用法 1.封装计算逻辑,异步返回. 2.异步计算结果串联异步处理 3.并行多个异步任务,统一等待结果 4.异步错误处理 Twitter包装 pom依赖 1.封装计算逻辑,异步返回 2.异步计算结果串联异步处理 3.并行多个异步任务 4.错误处理 其他用法 其他工具 异步编程(Twitter Future) 为啥要异步 异步编程有点难以理解,这东西感觉不符合常理,因为我们思考都是按照串行的逻辑,事都是一件一件办.但在异步计算的情况下,

  • Java并发编程Semaphore计数信号量详解

    Semaphore 是一个计数信号量,它的本质是一个共享锁.信号量维护了一个信号量许可集.线程可以通过调用acquire()来获取信号量的许可:当信号量中有可用的许可时,线程能获取该许可:否则线程必须等待,直到有可用的许可为止. 线程可以通过release()来释放它所持有的信号量许可(用完信号量之后必须释放,不然其他线程可能会无法获取信号量). 简单示例: package me.socketthread; import java.util.concurrent.ExecutorService;

  • Java并发编程总结——慎用CAS详解

    一.CAS和synchronized适用场景 1.对于资源竞争较少的情况,使用synchronized同步锁进行线程阻塞和唤醒切换以及用户态内核态间的切换操作额外浪费消耗cpu资源:而CAS基于硬件实现,不需要进入内核,不需要切换线程,操作自旋几率较少,因此可以获得更高的性能. 2.对于资源竞争严重的情况,CAS自旋的概率会比较大,从而浪费更多的CPU资源,效率低于synchronized.以java.util.concurrent.atomic包中AtomicInteger类为例,其getAn

  • 基于Java中字符串内存位置详解

    前言 之前写过一篇关于JVM内存区域划分的文章,但是昨天接到蚂蚁金服的面试,问到JVM相关的内容,解释一下JVM的内存区域划分,这部分答得还不错,但是后来又问了Java里面String存放的位置,之前只记得String是一个不变的量,应该是要存放在常量池里面的,但是后来问到new一个String出来应该是放到哪里的,这个应该是放到堆里面的,后来又问到String的引用是放在什么地方的,当时傻逼的说也是放在堆里面的,现在总结一下:基本类型的变量数据和对象的引用都是放在栈里面的,对象本身放在堆里面,

  • C++ 类中有虚函数(虚函数表)时 内存分布详解

    虚函数表 对C++ 了解的人都应该知道虚函数(Virtual Function)是通过一张虚函数表(Virtual Table)来实现的.简称为V-Table.在这个表中,主是要一个类的虚函数的地址表,这张表解决了继承.覆盖的问题,保证其容真实反应实际的函数.这样,在有虚函数的类的实例中这个表被分配在了这个实例的内存中,所以,当我们用父类的指针来操作一个子类的时候,这张虚函数表就显得由为重要了,它就像一个地图一样,指明了实际所应该调用的函数. 这里我们着重看一下这张虚函数表.C++的编译器应该是

  • C++对象内存分布详解(包括字节对齐和虚函数表)

    1.C++对象的内存分布和虚函数表: C++对象的内存分布和虚函数表注意,对象中保存的是虚函数表指针,而不是虚函数表,虚函数表在编译阶段就已经生成,同类的不同对象中的虚函数指针指向同一个虚函数表,不同类对象的虚函数指针指向不同虚函数表. 2.何时进行动态绑定: (1)每个类对象在被构造时不用去关心是否有其他类从自己派生,也不需要关心自己是否从其他类派生,只要按照一个统一的流程:在自身的构造函数执行之前把自己所属类(即当前构造函数所属的类)的虚函数表的地址绑定到当前对象上(一般是保存在对象内存空间

随机推荐