python自动计算图像数据集的RGB均值

本文实例为大家分享了python自动计算图像数据集的RGB均值,供大家参考,具体内容如下

图像数据集往往要进行去均值,以保证更快的收敛。

代码:

创建一个mean.py,写入如下代码。修改路径即可使用

'''
qhy
2018.12.3
'''
import os
import numpy as np
import cv2

ims_path='C:/Users/my/Desktop/JPEGImages/'# 图像数据集的路径
ims_list=os.listdir(ims_path)
R_means=[]
G_means=[]
B_means=[]
for im_list in ims_list:
 im=cv2.imread(ims_path+im_list)
#extrect value of diffient channel
 im_R=im[:,:,0]
 im_G=im[:,:,1]
 im_B=im[:,:,2]
#count mean for every channel
 im_R_mean=np.mean(im_R)
 im_G_mean=np.mean(im_G)
 im_B_mean=np.mean(im_B)
#save single mean value to a set of means
 R_means.append(im_R_mean)
 G_means.append(im_G_mean)
 B_means.append(im_B_mean)
 print('图片:{} 的 RGB平均值为 \n[{},{},{}]'.format(im_list,im_R_mean,im_G_mean,im_B_mean) )
#three sets  into a large set
a=[R_means,G_means,B_means]
mean=[0,0,0]
#count the sum of different channel means
mean[0]=np.mean(a[0])
mean[1]=np.mean(a[1])
mean[2]=np.mean(a[2])
print('数据集的BGR平均值为\n[{},{},{}]'.format( mean[0],mean[1],mean[2]) )
#cv.imread()读取Img时候将rgb转换为了bgr,谢谢taylover-pei的修正。

终端运行: python mean.py

结果示例如下:

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持我们。

(0)

相关推荐

  • Python实现计算图像RGB均值方式

    要求 存在一个文件夹内有若干张图像,需要计算每张图片的RGB均值,并计算全部图像的RGB均值. 代码 # -*- coding: utf-8 -*- """ Created on Thu Nov 1 10:43:29 2018 @author: Administrator """ import os import cv2 import numpy as np path = 'C:/Users/Administrator/Desktop/rgb'

  • Python 转换RGB颜色值的示例代码

    题目:转换RBG颜色值 我们知道在网页中的颜色值设置都是用16进制的RGB来表示的,比如#FFFFFF,表示R:255,G:255,B:255的白色. 现在请设计一个函数可以转换RGB的16进制至10进制,或者转换10进制至16进制输出格式. 例: print( color("#FFFFFF")) >>>(255, 255, 255) print( color((255,255,255)) >>> #FFFFFF Python源码: def colo

  • python自动计算图像数据集的RGB均值

    本文实例为大家分享了python自动计算图像数据集的RGB均值,供大家参考,具体内容如下 图像数据集往往要进行去均值,以保证更快的收敛. 代码: 创建一个mean.py,写入如下代码.修改路径即可使用 ''' qhy 2018.12.3 ''' import os import numpy as np import cv2 ims_path='C:/Users/my/Desktop/JPEGImages/'# 图像数据集的路径 ims_list=os.listdir(ims_path) R_me

  • Python计算图片数据集的均值方差示例详解

    目录 前言 Python批量reshape图片 参考 计算数据集均值和方差 前言 在做图像处理的时候,有时候需要得到整个数据集的均值方差数值,以下代码可以解决你的烦恼: (做这个之前一定保证所有的图片都是统一尺寸,不然算出来不对,我的代码里设计的是512*512,可以自己调整,同一尺寸的代码我也有: Python批量reshape图片 # -*- coding: utf-8 -*- """ Created on Thu Aug 23 16:06:35 2018 @author

  • 详解基于python的图像Gabor变换及特征提取

    1.前言 在深度学习出来之前,图像识别领域北有"Gabor帮主",南有"SIFT慕容小哥".目前,深度学习技术可以利用CNN网络和大数据样本搞事情,从而取替"Gabor帮主"和"SIFT慕容小哥"的江湖地位.但,在没有大数据和算力支撑的"乡村小镇"地带,或是对付"刁民小辈","Gabor帮主"可以大显身手,具有不可撼动的地位.IT武林中,有基于C++和OpenCV,或

  • Python实现图像去雾效果的示例代码

    目录 修改部分 训练测试 数据集 下载地址 修改部分 我利用该代码进行了去雾任务,并对原始代码进行了增删,去掉了人脸提取并对提取人脸美化的部分,如下图 增改了一些数据处理代码,Create_Bigfile2.py和Load_Bigfilev2为特定任务需要加的代码,这里数据处理用的是原始方法,即将训练数据打包成一个文件,一次性载入,可能会内存爆炸.去雾的如下 另外,为了节省内存,可以不使用原始方法,我改写了online_dataset_for_odl_photos.py文件 用于我的加雾论文,此

  • Python实现图像随机添加椒盐噪声和高斯噪声

    目录 1.常见的图像噪声 (1)高斯噪声 (2) 椒盐噪声 2.生成图像噪声 (1)高斯噪声 (2) 椒盐噪声(速度慢) (3) 椒盐噪声(快速版) 3. Demo性能测试 图像噪声是指存在于图像数据中的不必要的或多余的干扰信息.在噪声的概念中,通常采用信噪比(Signal-Noise Rate, SNR)衡量图像噪声.通俗的讲就是信号占多少,噪声占多少,SNR越小,噪声占比越大. 1.常见的图像噪声 (1)高斯噪声 高斯噪声Gaussian noise,是指它的概率密度函数服从高斯分布(即正态

  • pytorch 图像预处理之减去均值,除以方差的实例

    如下所示: #coding=gbk ''' GPU上面的环境变化太复杂,这里我直接给出在笔记本CPU上面的运行时间结果 由于方式3需要将tensor转换到GPU上面,这一过程很消耗时间,大概需要十秒,故而果断抛弃这样的做法 img (168, 300, 3) sub div in numpy,time 0.0110 sub div in torch.tensor,time 0.0070 sub div in torch.tensor with torchvision.transforms,tim

  • python 给图像添加透明度(alpha通道)

    我们常见的RGB图像通常只有R.G.B三个通道,在图像处理的过程中会遇到往往需要向图像中添加透明度信息,如公司logo的设计,其输出图像文件就需要添加透明度,即需要在RGB三个通道的基础上添加alpha通道信息.这里介绍两种常见的向RGB图像中添加透明度的方法. 1.使用图像合成(blending)的方法 可参考上篇博文(python图像处理(十)--两幅图像的合成一幅图像(blending two images) ) 代码如下: #-*- coding: UTF-8 -*- from PIL

  • python 实现图像快速替换某种颜色

    最近的对图像数据进行处理的时候需要将图像中的某个颜色替换为另一个颜色,但是网络上找到的方法都是通过对图像的遍历进行替换,实在是太费时了!刚开始使用时觉得CPU很快了,一张图片应该用不了多久,但是实际使用中耗时确实难以接受的!于是自己写了一个替换程序加快速度,比遍历快很多,但我觉得不是最快的,应该有通过矩阵索引更快的处理方式,只是我自己暂时并不知道该如何实现,如果以后能够实现会进行更新,暂时先写下自己暂时觉得可用的代码. 一.通过遍历替换 将图像中某个颜色替换为另一个颜色一般的做法是遍历整个图像,

  • 如何使用Python调整图像大小

    作者|Nicholas Ballard 编译|VK 来源|Towards Data Science 可以说,每一个"使用计算机的人"都需要在某个时间点调整图像的大小.MacOS的预览版可以做到,WindowsPowerToys也可以. 本文使用Python来调整图像大小,幸运的是,图像处理和命令行工具是Python的两个特长. 本文旨在向你展示三件事: 图像的基本概念. 用于操作图像的Python库. 你可以在自己的项目中使用本文的代码. 我们要构建的命令行程序可以一次调整一个或多个图

随机推荐