使用遗传算法求二元函数的最小值

二元函数为y=x1^2+x2^2,x∈[-5,5]

NIND=121;  %初始种群的个数(Number of individuals)
NVAR=2;   %一个染色体(个体)有多少基因
PRECI=20;  %变量的二进制位数(Precision of variables)
MAXGEN=200;  %最大遗传代数(Maximum number of generations)
GGAP=0.8;  %代沟(Generation gap),以一定概率选择父代遗传到下一代
trace=zeros(MAXGEN,2);   %寻优结果的初始值

Chrom=crtbp(NIND,PRECI*NVAR); %初始种群

%区域描述器(Build field descriptor)
%确定每个变量的二进制位数,取值范围,及取值范围是否包括边界等。
FieldD=[rep([PRECI],[1,NVAR]);rep([-5;5],[1,NVAR]);rep([1;0;1;1],[1,NVAR])];
Objv=objfun(bs2rv(Chrom,FieldD))
gen=1;     %代计数器
while gen<=MAXGEN
 Fitv=ranking(Objv); %分配适应度值(Assign fitness values)
 SelCh=select('sus',Chrom,Fitv,GGAP); %选择
 SelCh=recombin('xovsp',SelCh,1);  %重组
 SelCh=mut(SelCh);      %变异
 ObjVSel=objfun(bs2rv(SelCh,FieldD));%子代个体的十进制转换
 %重插入子代的新种群
 [Chrom,Objv]=reins(Chrom,SelCh,1,1,Objv,ObjVSel);
 trace(gen,1)=min(Objv);   %遗传算法性能跟踪
 trace(gen,2)=sum(Objv)/length(Objv);
  gen=gen+1;     %代计数器增加
end
plot(trace(:,1));
hold on
plot(trace(:,2),'.')
grid
legend('最优解的变化','解的平均值的变化')

根据上面的求解模型,可以写出模型的.M文件如下,即适应度函数

% OBJFUN.M
% Syntax: ObjVal = objfun1(Chrom,rtn_type)
%
% Input parameters:
% Chrom  - Matrix containing the chromosomes of the current
%    population. Each row corresponds to one individual's
%    string representation.
%    if Chrom == [], then special values will be returned
% rtn_type - if Chrom == [] and
%    rtn_type == 1 (or []) return boundaries
%    rtn_type == 2 return title
%    rtn_type == 3 return value of global minimum
%
% Output parameters:
% ObjVal - Column vector containing the objective values of the
%    individuals in the current population.
%    if called with Chrom == [], then ObjVal contains
%    rtn_type == 1, matrix with the boundaries of the function
%    rtn_type == 2, text for the title of the graphic output
%    rtn_type == 3, value of global minimum
% Author:  YQ_younger

function ObjVal = objfun(Chrom,rtn_type);

% Dimension of objective function
 Dim = 2;
% Compute population parameters
 [Nind,Nvar] = size(Chrom);
% Check size of Chrom and do the appropriate thing
 % if Chrom is [], then define size of boundary-matrix and values
 if Nind == 0
  % return text of title for graphic output
  if rtn_type == 2
   ObjVal = ['DE JONG function 1-' int2str(Dim)];
  % return value of global minimum
  elseif rtn_type == 3
   ObjVal = 0;
  % define size of boundary-matrix and values
  else
   % lower and upper bound, identical for all n variables
   ObjVal = 1*[-5; 5];
   ObjVal = ObjVal(1:2,ones(Dim,1));
  end
 % if Dim variables, compute values of function
 elseif Nvar == Dim
  % function 1, sum of xi^2 for i = 1:Dim (Dim=30)
  % n = Dim, -5 <= xi <= 5
  % global minimum at (xi)=(0) ; fmin=0
  ObjVal = sum((Chrom .* Chrom)')';
  % ObjVal = diag(Chrom * Chrom'); % both lines produce the same
 % otherwise error, wrong format of Chrom
 else
  error('size of matrix Chrom is not correct for function evaluation');
 end
% End of function

注释:
种群表示和初始化函数 bs2rv:
二进制串到实值的转换
Phen=bs2rv(Chrom,FieldD) FieldD=[len, lb, ub, code, scale, lbin, ubin]
code(i)=1为标准的二进制编码,code(i)=0为格雷编码
scale(i)=0为算术刻度,scale(i)=1为对数刻度
函数 crtbp:
创建初始种群
[Chrom,Lind,BaseV]=crtbp(Nind,Lind)

[Chrom,Lind,BaseV]=crtbp(Nind,BaseV)
[Chrom,Lind,BaseV]=crtbp(Nind,Lind,BaseV)

Nind指定种群中个体的数量,Lind指定个体的长度
函数 crtrp:
创建实值原始种群
Chrom=crtrp(Nind,FieldDR)

适应度计算函数 ranking:
基于排序的适应度分配(此函数是从最小化方向对个体进行排序的)
FitV=ranking(ObjV)
FitV=ranking(ObjV, RFun)
FitV=ranking(ObjV, RFun, SUBPOP)
Rfun(1)线性排序标量在[1 2]间为,非线性排序在[1 length(ObjV)-2]
Rfun(2)指定排序方法,0为线性排序,1为非线性排序
SUBPOP指明ObjV中子种群的数量,默认为1

选择高级函数 select:
从种群中选择个体
SelCh=select(SEL_F, Chrom, FitnV)
SelCh=select(SEL_F, Chrom, FitnV, GGAP)
SelCh=select(SEL_F, Chrom, FitnV, GGAP, SUBPOP)

SEL_F是一字符串,为一低级选择函数名,如rws或sus
GGAP指出了代沟,默认为1;也可大于1,允许子代数多于父代的数量
rws: 轮盘赌选择
NewChrIx=rws(FitnV, Nsel) 使用轮盘赌选择从一个种群中选择Nsel个个体
NewChrIx 是为育种选择的个体的索引值
sus:
随机遍历抽样
NewChrIx=sus(FitnV, Nsel)

交叉高级函数 recombin:
重组个体
NewChrom=recombin(REC_F, Chrom)
NewChrom=recombin(REC_F, Chrom, RecOpt)
NewChrom=recombin(REC_F, Chrom, RecOpt, SUBPOP)
REC_F是包含低级重组函数名的字符串,例如recdis,recint,reclin,xovdp, xovdprs, xovmp, xovsh, xovshrs, xovsp, xovsprs
recdis:
离散重组
NewChrom=recdis(OldChorm)
recint:
中间重组
NewChrom=recint(OldChorm)
reclin:
线性重组
NewChrom=reclin(OldChorm)
xovdp:

两点交叉

NewChrom=xovdp(OldChrom, XOVR)

XOVR为交叉概率, 默认为0.7
Xovdprs:
减少代理的两点交叉
NewChrom=xovdprs(OldChrom, XOVR)
Xovmp:

多点交叉

NewChrom=xovmp(OldChrom, XOVR, Npt, Rs)

Npt指明交叉点数, 0 洗牌交叉;1 单点交叉;2 两点交叉;
默认为0

Rs指明使用减少代理, 0 不减少代理;1 减少代理;
默认为0
Xovsh:

洗牌交叉

NewChrom=xovsh(OldChrom, XOVR)
Xovshrs:
减少代理的洗牌交叉
NewChrom=xovshrs(OldChrom, XOVR)
Xovsp:
单点交叉
NewChrom=xovsp(OldChrom, XOVR)
Xovsprs:
减少代理的单点交叉
NewChrom=xovsprs(OldChrom, XOVR)

变异高级函数 mutate:
个体的变异
NewChorm=mutate(MUT_F, OldChorm, FieldDR) NewChorm=mutate(MUT_F, OldChorm, FieldDR, MutOpt) NewChorm=mutate(MUT_F, OldChorm, FieldDR, MutOpt, SUBPOP) MUT_F为包含低级变异函数的字符串,例如mut, mutbga, recmut
mut:
离散变异算子
NewChrom=mut(OldChorm, Pm) NewChrom=mut(OldChorm, Pm, BaseV)
Pm为变异概率,默认为Pm=0.7/Lind
mutbga:
实值种群的变异(遗传算法育种器的变异算子) NewChrom=mutbga(OldChorm, FieldDR)
NewChrom=mubga(OldChorm, FieidDR, MutOpt)
MutOpt(1)是在[ 0 1]间的重组概率的标量,默认为1
MutOpt(2)是在[0 1]间的压缩重组范围的标量,默认为1(不压缩)
recmut:
具有突变特征的线性重组
NewChrom=recmut(OldChorm, FieldDR)
NewChrom=recmut(OldChorm, FieidDR, MutOpt)

重插入函数 reins:
重插入子群到种群
Chorm=reins(Chorm, SelCh)
Chorm=reins(Chorm, SelCh, SUBPOP)
Chorm=reins(Chorm, SelCh, SUBPOP, InsOpt, ObjVch)
[Chorm, ObjVch]=reins(Chorm, SelCh, SUBPOP, InsOpt, ObjVch, ObjVSel)
InsOpt(1)指明用子代代替父代的选择方法,0为均匀选择,1为基于适应度的选择,默认为0
InsOpt(2)指明在[0 1]间每个子种群中重插入的子代个体在整个子种群的中个体的比率,默认为1

ObjVch包含Chorm中个体的目标值,对基于适应度的重插入是必需的
ObjVSel包含Selch中个体的目标值,如子代数量大于重插入种群的子代数量是必需的

其他函数矩阵复试函数 rep:
MatOut=rep(MatIn, REPN)
REPN为复制次数

以上这篇使用遗传算法求二元函数的最小值就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持我们。

(0)

相关推荐

  • python 寻找优化使成本函数最小的最优解的方法

    今天来学习变量优化问题.寻找使成本函数最小的题解.适用于题解相互独立的情况,设计随机优化算法.爬山法.模拟退火算法.遗传算法. 优化问题的的精髓是:1.将题解转化为数字序列化,可以写出题解范围.2.成本函数能返回值 问题场景: 所有乘客从不同的地方飞到同一个目的地,服务人员等待所有人到来以后将人一次性接走. 离开时,服务人员将人一次性带到飞机场,所有乘客等待自己的航班离开. 要解决的问题: 如何设置乘客的到来和离开航班,以及接送机的时间,使得总代价最小. 将题解设为数字序列. 数字表示某人乘坐的

  • python 遗传算法求函数极值的实现代码

    废话不多说,大家直接看代码吧! """遗传算法实现求函数极大值-Zjh""" import numpy as np import random import matplotlib.pyplot as plt class Ga(): """求出二进制编码的长度""" def __init__(self): self.boundsbegin = -2 self.boundsend = 3 p

  • 使用遗传算法求二元函数的最小值

    二元函数为y=x1^2+x2^2,x∈[-5,5] NIND=121; %初始种群的个数(Number of individuals) NVAR=2; %一个染色体(个体)有多少基因 PRECI=20; %变量的二进制位数(Precision of variables) MAXGEN=200; %最大遗传代数(Maximum number of generations) GGAP=0.8; %代沟(Generation gap),以一定概率选择父代遗传到下一代 trace=zeros(MAXGE

  • C++ 数据结构之kmp算法中的求Next()函数的算法

    C++ 数据结构之kmp算法中的求Next()函数的算法 实例代码: #include <iostream> using namespace std; void preKmp(char *c, int m, int Next[]) { int i=1,j=-1; Next[0]=-2; while(i<m) { if(j==-2) { Next[i]=-1; i++; j=-1; } ++j; if(i==m) return; if(c[i]==c[j]) { Next[i]=j; ++

  • 使用python绘制二元函数图像的实例

    废话少说,直接上代码: #coding:utf-8 import numpy as np import matplotlib.pyplot as plt from mpl_toolkits.mplot3d import Axes3D def function_2(x,y): # 这里的函数可以任意定义 return np.sum(x**2) fig = plt.figure() ax = Axes3D(fig) x = np.arange(-3,-3,0.1) y = np.arange(-3,

  • 利用python实现PSO算法优化二元函数

    python实现PSO算法优化二元函数,具体代码如下所示: import numpy as np import random import matplotlib.pyplot as plt from mpl_toolkits.mplot3d import Axes3D #----------------------PSO参数设置--------------------------------- class PSO(): def __init__(self,pN,dim,max_iter): #初

  • python 对任意数据和曲线进行拟合并求出函数表达式的三种解决方案

    第一种是进行多项式拟合,数学上可以证明,任意函数都可以表示为多项式形式.具体示例如下. ###拟合年龄 import numpy as np import matplotlib.pyplot as plt #定义x.y散点坐标 x = [10,20,30,40,50,60,70,80] x = np.array(x) print('x is :\n',x) num = [174,236,305,334,349,351,342,323] y = np.array(num) print('y is

  • Python 马氏距离求取函数详解

    马氏距离区别于欧式距离,如百度知道中所言: 马氏距离(Mahalanobis distance)是由印度统计学家马哈拉诺比斯(P. C. Mahalanobis)提出的,表示点与一个分布之间的距离.它是一种有效的计算两个未知样本集的相似度的方法.与 欧氏距离不同的是,它考虑到各种特性之间的联系(例如:一条关于身高的信息会带来一条关于体重的信息,因为两者是有关联的),并且是尺度无关的(scale-invariant),即独立于测量尺度.对于一个均值为μ, 协方差矩阵为Σ的多变量向量,其马氏距离为s

  • 求PHP数组最大值,最小值的代码

    复制代码 代码如下: <?php $fruits = array("155::vbscript::http://www.jb51.net/list/list_114_1.htm", "1::javascript::http://www.jb51.net/list/list_3_1.htm", "2::正则表达式::http://www.jb51.net/list/list_6_1.htm", "3::服务器常用软件::http:/

  • python遗传算法之geatpy的深入理解

    目录 1. geatpy的安装 2. geatpy的基础数据结构 2.1 种群染色体 2.2 种群表现型 2.3 目标函数值 2.4 个体适应度 2.5 违反约束程度矩阵 2.6 译码矩阵 2.7 进化追踪器 3. geatpy的种群结构 3.1 Population类 3.2 PsyPopulation类 4. 求解标准测试函数——McCormick函数 5.参考文章 今天我们来学习python中的遗传算法的使用,我们这里使用的是geatpy的包进行学习,本博客主要从geatpy中的各种数据结

  • 详解用python实现简单的遗传算法

    今天整理之前写的代码,发现在做数模期间写的用python实现的遗传算法,感觉还是挺有意思的,就拿出来分享一下. 首先遗传算法是一种优化算法,通过模拟基因的优胜劣汰,进行计算(具体的算法思路什么的就不赘述了).大致过程分为初始化编码.个体评价.选择,交叉,变异. 遗传算法介绍 遗传算法是通过模拟大自然中生物进化的历程,来解决问题的.大自然中一个种群经历过若干代的自然选择后,剩下的种群必定是适应环境的.把一个问题所有的解看做一个种群,经历过若干次的自然选择以后,剩下的解中是有问题的最优解的.当然,只

随机推荐