如何用Python绘制棒棒糖图表

大家好,我是小F~

条形图在数据可视化里,是一个经常被使用到的图表。

虽然很好用,也还是存在着缺陷呢。比如条形图条目太多时,会显得臃肿,不够直观。

棒棒糖图表则是对条形图的改进,以一种小清新的设计,清晰明了表达了我们的数据。

下面小F就给大家介绍一下,如何使用Python绘制棒棒糖图表。

使用到的是我国1949到2019年,历年的出生人口数据,数据来源国家统计局。

首先读取一下数据。

import pandas as pd
import matplotlib.pyplot as plt

# 读取数据
df = pd.read_csv('data.csv')
print(df)

结果如下。

数据集很简单,每行都只有一个年份和一个值。

先绘制一个带有每年数值的条形图。

# 绘制柱状图
plt.bar(df.Year, df.value)
plt.show()

两行代码,即可得到一张条形图图表,看起来确实是有点拥挤。

下面将最后一年,即2019年的数据区分出来。

给2019年的条形着色为黑色,其他年份为浅灰色。

并且在图表中添加散点图,可在条形图的顶部绘制圆形。

# 新建画布
fig, ax = plt.subplots(1, figsize=(12, 8))

# 年份数
n = len(df)
# 颜色设置
colors = ['black'] + ((n-1)*['lightgrey'])
plt.bar(df.Year, df.value, color=colors)
plt.scatter(df.Year, df.value, color=colors)
plt.show()

得到结果如下。

颜色已经修改成功,还需要调整一下条形图的宽度以及顶部圆圈的大小。

# width: 条形图宽度  s: 散点图圆圈大小
plt.bar(df.Year, df.value, color=colors, width=0.2)
plt.scatter(df.Year, df.value, color=colors, s=10)
plt.show()

结果如下。

比起先前的蓝色条形图图表,棒棒糖图表确实是好看了不少。

除了用条形图来绘制棒棒糖图表,还可以使用线条,这样整体的宽度会更加一致。

X将Year(年份)数据作为起点和终点,Y以-20和各年份数据作为起点和终点。

import pandas as pd
import matplotlib.pyplot as plt

# 读取数据
df = pd.read_csv('data.csv')
print(df)

# 新建画布
fig, ax = plt.subplots(1, figsize=(12, 8))

# 年份数
n = len(df)
# 颜色设置
colors = ['black'] + ((n-1)*['lightgrey'])
# 使用线条
for idx, val in df.iterrows():
    plt.plot([val.Year, val.Year],
             [-20, val.value],
             color=colors[idx])
plt.show()

得到结果如下。

可以使用参数标记在两端绘制圆,而不是只在顶部生成散点图。

然后可以通过更改y-limit参数来隐藏最底端的圆。

# 新建画布
fig, ax = plt.subplots(1, figsize=(12, 8))

# 年份数
n = len(df)
# 颜色设置
colors = ['black'] + ((n-1)*['lightgrey'])
# 使用线条, markersize设置标记点大小
for idx, val in df.iterrows():
    plt.plot([val.Year, val.Year],
             [-20, val.value],
             color=colors[idx],
             marker='o',
             markersize=3)

# 设置y轴最低值
plt.ylim(0,)
plt.show()

结果如下。

此外还可以调整lw、markersize参数,定义线条的粗细及标记的大小,甚至可以绘制两次线条以创建轮廓效果。

# 新建画布
fig, ax = plt.subplots(1, figsize=(12, 8))
color = 'b'

# 年份数
n = len(df)
# 颜色设置
colors = ['black'] + ((n-1)*['lightgrey'])
# 使用线条
for idx, val in df.iterrows():
    plt.plot([val.Year, val.Year],
             [-20, val.value],
             color='black',
             marker='o',
             lw=4,
             markersize=6)
    plt.plot([val.Year, val.Year],
             [-20, val.value],
             color=colors[idx],
             marker='o',
             markersize=4)

# 移除上边框、右边框
ax.spines['right'].set_visible(False)
ax.spines['top'].set_visible(False)

# 设置x、y轴范围
plt.xlim(1948, 2020)
plt.ylim(0,)

# 中文显示
plt.rcParams['font.sans-serif'] = ['Songti SC']

plt.title('中国历年出生人口数据(万)', loc='left', fontsize=16)
plt.text(2019, -220, '来源:国家统计局', ha='right')

# 2019年出生人口数(显示)
value_2019 = df[df['Year'] == 2019].value.values[0]
plt.text(2019, value_2019+80, value_2019, ha='center')

# 保存图片
plt.savefig('chart.png')

得到结果如下。

黑色不是特别好看,改个颜色看看。

# 新建画布
fig, ax = plt.subplots(1, figsize=(12, 8))

# 年份数
n = len(df)
# 颜色设置
color = 'b'
colors = ['#E74C3C'] + ((len(df)-1)*['#F5B7B1'])
# 使用线条
for idx, val in df.iterrows():
    plt.plot([val.Year, val.Year],
             [-20, val.value],
             color=colors[idx],
             marker='o',
             lw=4,
             markersize=6,
             markerfacecolor='#E74C3C')

# 移除上边框、右边框
ax.spines['right'].set_visible(False)
ax.spines['top'].set_visible(False)

# 设置x、y轴范围
plt.xlim(1948, 2020)
plt.ylim(0,)

# 中文显示
plt.rcParams['font.sans-serif'] = ['Songti SC']

plt.title('中国历年出生人口数据(万)', loc='left', fontsize=16)
plt.text(2019, -220, '来源:国家统计局', ha='right')

# 2019年出生人口数(显示)
value_2019 = df[df['Year'] == 2019].value.values[0]
plt.text(2019, value_2019+80, value_2019, ha='center')

# 保存图片
plt.savefig('chart.png')

得到结果如下。

源码地址:

链接:https://pan.baidu.com/s/1vUgjonTOvgN7rDPx_8RfUg  密码:i613

现在对于条形图,你就有了另外一个选择,即棒棒糖图表。

此外我们也能了解到目前中国的新出生人口数量是越来越少,据说2020年出生人口降幅或超一成,未来几年恐跌破1000万...

以上就是如何用Python绘制棒棒糖图表的详细内容,更多关于用Python绘制棒棒糖图表的资料请关注我们其它相关文章!

(0)

相关推荐

  • python 生成正态分布数据,并绘图和解析

    1.生成正态分布数据并绘制概率分布图 import pandas as pd import numpy as np import matplotlib.pyplot as plt # 根据均值.标准差,求指定范围的正态分布概率值 def normfun(x, mu, sigma): pdf = np.exp(-((x - mu)**2)/(2*sigma**2)) / (sigma * np.sqrt(2*np.pi)) return pdf # result = np.random.randi

  • python海龟绘图之画国旗实例代码

    画之前肯定要知道规格图,我找了一个大致的图. 参考图片: 绘制大星的方法很简单,五角星的补角是144度. 绘制小五角星有点麻烦,因为我国国旗上的小五角星并不是平放的(美帝曾经这样把我们的国旗搞错过),而是总有一个角正对着大五角星的中心!我的方法是,定位到小五角星的中心点,然后根据角度后退一定的长度.这个角度可以根据反勾股定理算出来(这有计算工具),长度我是按照大五角星的中心点到角尖的距离除以3得到的. 代码: from turtle import * screensize(2000,2000,'

  • python 基于opencv 实现一个鼠标绘图小程序

    需求 在画布上用鼠标画图,可以画圆或矩形,按m键在两种模式下切换.左键按下时开始画图,移动到哪儿画到哪儿,左键释放时结束画图. 实现思想 用鼠标画图:需要定义鼠标的回调函数mouse_event 画圆或矩形:需要定义一个画图的模式mode 左键单击.移动.释放:需要捕获三个不同的事件 开始画图,结束画图:需要定义一个画图的标记位drawing 实现代码 import cv2 as cv import numpy as np drawing = False # 是否开始画图 mode = True

  • Python三维绘图之Matplotlib库的使用方法

    前言 在遇到三维数据时,三维图像能给我们对数据带来更加深入地理解.python的matplotlib库就包含了丰富的三维绘图工具. 1.创建三维坐标轴对象Axes3D 创建Axes3D主要有两种方式,一种是利用关键字projection='3d'l来实现,另一种则是通过从mpl_toolkits.mplot3d导入对象Axes3D来实现,目的都是生成具有三维格式的对象Axes3D. #方法一,利用关键字 from matplotlib import pyplot as plt from mpl_

  • Python数据可视化常用4大绘图库原理详解

    今天我们就用一篇文章,带大家梳理matplotlib.seaborn.plotly.pyecharts的绘图原理,让大家学起来不再那么费劲! 1. matplotlib绘图原理 关于matplotlib更详细的绘图说明,大家可以参考下面这篇文章,相信你看了以后一定学得会. matplotlib绘图原理:http://suo.im/678FCo 1)绘图原理说明 通过我自己的学习和理解,我将matplotlib绘图原理高度总结为如下几步: 导库;创建figure画布对象;获取对应位置的axes坐标

  • Python绘图库Matplotlib的基本用法

    一.前言 Matplotlib是Python的绘图库,不仅具备强大的绘图功能,还能够在很多平台上使用,和Jupyter Notebook有极强的兼容性. 二.线型图 import matplotlib.pyplot as plt import numpy as np # 指定生成随机数的种子,这样每次运行得到的随机数都是相同的 np.random.seed(42) # 生成30个满足平均值为0.方差为1的正态分布的样本 x = np.random.randn(30) # plot本意有"绘制(图

  • Python绘图实现台风路径可视化代码实例

    台风是重大灾害性天气,台风引起的直接灾害通常由三方面造成,狂风.暴雨.风暴潮,除此以外台风的这些灾害极易诱发城市内涝.房屋倒塌.山洪.泥石流等次生灾害.正因如此,台风在科研和业务工作中是研究的重点.希望这次台风路径可视化可以给予大家一点点帮助. 台风路径的获取 中国气象局(CMA) 中国气象局(CMA)的台风最佳路径数据集(BST),BST是之后对历史台风路径进行校正后发布的,其经纬度.强度.气压具有更高的可靠性,但是时间分辨率为6小时,部分3小时,这一点不如观测数据.下载地址: http://

  • python绘图模块之利用turtle画图

    模块之turtle 小故事 前两天朋友说:"常文啊!听说你会python,那能不能用python画一些好看的图呢?"然后我特意去学了一下turtle模块,现在给大家分享一下. 一.什么是turtle Turtle是python内嵌的绘制线.圆以及其他形状(包括文本)的图形模块. 二.turtle函数的使用 import turtle turtle.pendown() # 放下画笔 turtle.penup() # 抬起画笔 turtle.pensize(int) # 设置画笔宽度,值为

  • python 绘图模块matplotlib的使用简介

    上周对线上某几个磁盘进行了fio硬盘性能测试,测试完成之后的结果需要绘制成图像展示出来.我在官网上查找了一下fio自带的命令fio_generate_plot和fio2gnuplot工具的用法,找到了图像的绘制方法,在某一个单一的场景下,确实可以使用这两个工具来进行硬盘性能图像绘制,但是问题是,如果要对比多个场景下绘制出来的图像的差异,fio自带的绘图工具实现起来就有些困难了,但是确实也能实现.例如下图: 如图所示为磁盘iodepth不变,numjobs在(1,8,16)三种不同的场景下绘制出来

  • 用Python的绘图库(matplotlib)绘制小波能量谱

    时间小波能量谱 反映信号的小波能量沿时间轴的分布. 由于小波变换具有等距效应,所以有: 式中 表示信号强度,对于式①在平移因子b方向上进行加权积分 式中 代表时间-小能量谱 尺度小波能量谱 反映信号的小波能量随尺度的变化情况. 同理,对式①在尺度方向上进行加权积分: 式中 连续小波变换 连续小波变换的结果是一个小波系数矩阵,随着尺度因子和位移因子变化.然后将系数平方后得到小波能量,把每个尺度因子对应的所有小波能量进行叠加,那么就可以得到随尺度因子变换的小波能量谱曲线.把尺度换算成频率后,这条曲线

  • python绘图pyecharts+pandas的使用详解

    pyecharts介绍 pyecharts 是一个用于生成 Echarts 图表的类库.Echarts 是百度开源的一个数据可视化 JS 库.用 Echarts 生成的图可视化效果非常棒 为避免绘制缺漏,建议全部安装 为了避免下载缓慢,作者全部使用镜像源下载过了 pip install -i https://pypi.tuna.tsinghua.edu.cn/simple/ echarts-countries-pypkg pip install -i https://pypi.tuna.tsin

随机推荐