Python库AutoTS一行代码得到最强时序基线

时间序列问题无论是在销量预测,天气预测还是在股票预测等问题中都至关重要,而如今随着机器学习等快速发展,已经出现了非常多时间序列建模相关的工具包,今天介绍一种非常霸道的工具,融合了自动化机器学习技术开发的AutoTS。

Auto TS会先对数据进行预处理,从数据中删除异常值,通过学习寻找最佳的NaN值。只需使用一行代码,就可以训练多个时间序列模型,包括ARIMA、SARIMAX、FB Prophet、VAR,并得出效果最佳的模型。

AutoTS

Auto TS是一个关于时间序列预测的开源Python库。

该库是 autoML 的一部分,其目标是为初学者提供自动化库。

它可以在仅仅使用一行Python代码中训练多个时间序列预测模型,包括ARIMA、SARIMAX、FB Prophet、VAR等,然后在从中选择最佳模型进行预测。其中AutoTS包含的技术有:

  • 遗传规划优化方法寻找最优时间序列预测模型。
  • 训练简单的模型、统计模型、机器学习模型和深度学习模型,同时涉及到所有可能的超参数配置和交叉验证。
  • 其它

代码

# !pip install autots
from autots import auto_timeseries
import pandas as pd

df = pd.read_csv("./data/data.csv", usecols=['Date', 'Close'])
df['Date'] = pd.to_datetime(df['Date'])
df = df.sort_values('Date')
train_df.Close.plot(figsize=(15,8), title= 'AMZN Stock Price', fontsize=14, label='Train')
test_df.Close.plot(figsize=(15,8), title= 'AMZN Stock Price', fontsize=14, label='Test')
plt.legend()
plt.grid()
plt.show()

model = auto_timeseries(forecast_period=219, score_type='rmse', time_interval='D', model_type='best')
model.fit(traindata= train_df, ts_column="Date", target="Close")
future_predictions = model.predict(testdata=219)

小结

Auto TS是一个非常不错的时间序列Baseline工具包,集成了非常多经典的时序模型,在碰到时间序列问题时,可以考虑使用AutoTS来进行训练和预测,作为一个非常不错的基线。

参考文献

Train multiple Time Series Forecasting Models in one line of Python Code

https://pypi.org/project/AutoTS/

https://github.com/winedarksea/AutoTS

到此这篇关于AutoTS一行代码得到最强时序基线的文章就介绍到这了,更多相关AutoTS时序基线内容请搜索我们以前的文章或继续浏览下面的相关文章希望大家以后多多支持我们!

(0)

相关推荐

  • Python的Pandas时序数据详解

    目录 Pandas时序数据 一.python中的时间表示-datetime模块 1.换取当前时间 2.指定时间 3.运算 二. Pandas处理时序序列 1.pd.Timestamp() 2.pd.Timedelta() 3.运算 4.时间索引 总结 Pandas时序数据 前言 在数据分析中,时序数据是一类非常重要的数据.事物的发展总是伴随着时间的推移,数据也会在各个时间点上产生. 一.python中的时间表示-datetime模块 ​ Python的标准库datetime支持创建和处理时间,P

  • Python库AutoTS一行代码得到最强时序基线

    时间序列问题无论是在销量预测,天气预测还是在股票预测等问题中都至关重要,而如今随着机器学习等快速发展,已经出现了非常多时间序列建模相关的工具包,今天介绍一种非常霸道的工具,融合了自动化机器学习技术开发的AutoTS. Auto TS会先对数据进行预处理,从数据中删除异常值,通过学习寻找最佳的NaN值.只需使用一行代码,就可以训练多个时间序列模型,包括ARIMA.SARIMAX.FB Prophet.VAR,并得出效果最佳的模型. AutoTS Auto TS是一个关于时间序列预测的开源Pytho

  • Python实现判断一行代码是否为注释的方法

    目前的编辑器大都可以自动检测某一行代码是否为代码行或注释行,但并不太提供代码行/注释行行数的统计,对于大量代码文件的代码行/注释行统计,就更少见一些.本篇文章试用一段Python脚本来实现这一目标,并希望可以兼容统计不同语言编写的代码. 注释符号的研究 我们先来关注常见语言的注释符号构成.一般来讲注释符号分为单行注释符和多行注释符,以Python为例,则分别为#和'''(或""").由于多行注释符会影响后续行的判断,所以在遍历各行时必须存在一个标志位multiCmtFlagI

  • Python 如何用一行代码实现for循环初始化数组

    我就废话不多说了,大家还是直接看代码吧~ # 用一行代码实现for循环初始化数组 o = 10 b = [ o + u for u in range( 10 ) ] print( b ) # 结果是 [10, 11, 12, 13, 14, 15, 16, 17, 18, 19] x = 2 y = 3 c = [ i * y + x for i in range( 10 ) ] print( c ) # 结果是 [2, 5, 8, 11, 14, 17, 20, 23, 26, 29] 补充:

  • python图像处理-利用一行代码实现灰度图抠图

    目录 一行代码实现灰度图抠图 Python抠图程序源码 准备 程序构思 完整代码截图如下,每条语句均有功能注释 一行代码实现灰度图抠图 抠图是ps的最基本技能,利用python可以实现用一行代码实现灰度图抠图. 基础算法是确定图像二值化分割阈值的大津法,将图像分成背景和前景两部分,最大化背景和前景之间的类间方差. 具体理论部分可以搜索大津法了解一下,代码部分只要在调用threshold的函数中,参数选择THRESH_OTSU就可以调用大津法分割 ret1, th1 = cv2.threshold

  • Python3一行代码实现图片文字识别的示例

    自学Python3第5天,今天突发奇想,想用Python识别图片里的文字.没想到Python实现图片文字识别这么简单,只需要一行代码就能搞定 from PIL import Image import pytesseract #上面都是导包,只需要下面这一行就能实现图片文字识别 text=pytesseract.image_to_string(Image.open('denggao.jpeg'),lang='chi_sim') print(text) 我们以识别诗词为例 下面是我们要识别的图片 先

  • 微软开源最强Python自动化神器Playwright(不用写一行代码)

    相信玩过爬虫的朋友都知道selenium,一个自动化测试的神器工具.写个Python自动化脚本解放双手基本上是常规的操作了,爬虫爬不了的,就用自动化测试凑一凑. 虽然selenium有完备的文档,但也需要一定的学习成本,对于一个纯小白来讲还是有些门槛的. 最近,微软开源了一个项目叫「playwright-python」,简直碉堡了!这个项目是针对Python语言的纯自动化工具,连代码都不用写,就能实现自动化功能. 可能你会觉得有点不可思议,但它就是这么厉害.下面我们一起看下这个神器. 1. Pl

  • Python:一行代码,导入Python所有库

    目录 1.引言 2.Pyforest 2.1 Pyforest 介绍 2.2 Pyforest 安装与使用 2.2.1 安装 2.2.2 使用 总结 1.引言 今天我们来分享一个懒人库:Pyforest. 小屌丝:鱼哥,今天啥情况,你突然分享这个库? 小鱼:这不是因为我准备换吃饭的家伙 电脑,为了能省事,少敲几次pip install xxx 的动作- 小屌丝:嗯??你的意思,安装这个库,就不需要安装别的库了? 小鱼:必须的~像我这种节约时间的男人- 小屌丝:你能不能好好说话!!! 小鱼:-好吧

  • 只需要这一行代码就能让python计算速度提高十倍

    一.前言 Python语言近年来人气爆棚.它广泛应用于数据科学,人工智能,以及网络安全问题中,由于代码可读性较强,学习效率较高,吸引了许多非科班的同学进行学习.然而,使用Python一段时间以后,发现它在速度上完全没有优势可言,特别是计算密集型任务里,性能问题一直是Python的软肋.本文主要介绍了Python的JIT编译器Numba,能够在对代码侵入最少的情况下,极大加速计算核心函数的运行速度,适合数据分析业务相关的同学使用. 首先要回答这样一个问题:当运行同一个程序时,为什么Python会

  • 让代码变得更易维护的7个Python库

    随着软件项目进入"维护模式",对可读性和编码标准的要求很容易落空(甚至从一开始就没有建立过那些标准).然而,在代码库中保持一致的代码风格和测试标准能够显著减轻维护的压力,也能确保新的开发者能够快速了解项目的情况,同时能更好地全程保持应用程序的质量. 使用外部库来检查代码的质量不失为保护项目未来可维护性的一个好方法.以下会推荐一些我们最喜爱的 检查代码 (包括检查 PEP 8 和其它代码风格错误)的库,用它们来强制保持代码风格一致,并确保在项目成熟时有一个可接受的测试覆盖率. 检查你的代

  • 一行代码让 Python 的运行速度提高100倍

    python一直被病垢运行速度太慢,但是实际上python的执行效率并不慢,慢的是python用的解释器Cpython运行效率太差. "一行代码让python的运行速度提高100倍"这绝不是哗众取宠的论调. 我们来看一下这个最简单的例子,从1一直累加到1亿. 最原始的代码: import time def foo(x,y): tt = time.time() s = 0 for i in range(x,y): s += i print('Time used: {} sec'.form

随机推荐