详解Python之Scrapy爬虫教程NBA球员数据存放到Mysql数据库

获取要爬取的URL

爬虫前期工作

用Pycharm打开项目开始写爬虫文件

字段文件items

# Define here the models for your scraped items
#
# See documentation in:
# https://docs.scrapy.org/en/latest/topics/items.html

import scrapy

class NbaprojectItem(scrapy.Item):
  # define the fields for your item here like:
  # name = scrapy.Field()
  # pass
  # 创建字段的固定格式-->scrapy.Field()
  # 英文名
  engName = scrapy.Field()
  # 中文名
  chName = scrapy.Field()
  # 身高
  height = scrapy.Field()
  # 体重
  weight = scrapy.Field()
  # 国家英文名
  contryEn = scrapy.Field()
  # 国家中文名
  contryCh = scrapy.Field()
  # NBA球龄
  experience = scrapy.Field()
  # 球衣号码
  jerseyNo = scrapy.Field()
  # 入选年
  draftYear = scrapy.Field()
  # 队伍英文名
  engTeam = scrapy.Field()
  # 队伍中文名
  chTeam = scrapy.Field()
  # 位置
  position = scrapy.Field()
  # 东南部
  displayConference = scrapy.Field()
  # 分区
  division = scrapy.Field()

爬虫文件

import scrapy
import json
from nbaProject.items import NbaprojectItem

class NbaspiderSpider(scrapy.Spider):
  name = 'nbaSpider'
  allowed_domains = ['nba.com']
  # 第一次爬取的网址,可以写多个网址
  # start_urls = ['http://nba.com/']
  start_urls = ['https://china.nba.com/static/data/league/playerlist.json']
  # 处理网址的response
  def parse(self, response):
    # 因为访问的网站返回的是json格式,首先用第三方包处理json数据
    data = json.loads(response.text)['payload']['players']
    # 以下列表用来存放不同的字段
    # 英文名
    engName = []
    # 中文名
    chName = []
    # 身高
    height = []
    # 体重
    weight = []
    # 国家英文名
    contryEn = []
    # 国家中文名
    contryCh = []
    # NBA球龄
    experience = []
    # 球衣号码
    jerseyNo = []
    # 入选年
    draftYear = []
    # 队伍英文名
    engTeam = []
    # 队伍中文名
    chTeam = []
    # 位置
    position = []
    # 东南部
    displayConference = []
    # 分区
    division = []
    # 计数
    count = 1
    for i in data:
      # 英文名
      engName.append(str(i['playerProfile']['firstNameEn'] + i['playerProfile']['lastNameEn']))
      # 中文名
      chName.append(str(i['playerProfile']['firstName'] + i['playerProfile']['lastName']))
      # 国家英文名
      contryEn.append(str(i['playerProfile']['countryEn']))
      # 国家中文
      contryCh.append(str(i['playerProfile']['country']))
      # 身高
      height.append(str(i['playerProfile']['height']))
      # 体重
      weight.append(str(i['playerProfile']['weight']))
      # NBA球龄
      experience.append(str(i['playerProfile']['experience']))
      # 球衣号码
      jerseyNo.append(str(i['playerProfile']['jerseyNo']))
      # 入选年
      draftYear.append(str(i['playerProfile']['draftYear']))
      # 队伍英文名
      engTeam.append(str(i['teamProfile']['code']))
      # 队伍中文名
      chTeam.append(str(i['teamProfile']['displayAbbr']))
      # 位置
      position.append(str(i['playerProfile']['position']))
      # 东南部
      displayConference.append(str(i['teamProfile']['displayConference']))
      # 分区
      division.append(str(i['teamProfile']['division']))

      # 创建item字段对象,用来存储信息 这里的item就是对应上面导的NbaprojectItem
      item = NbaprojectItem()
      item['engName'] = str(i['playerProfile']['firstNameEn'] + i['playerProfile']['lastNameEn'])
      item['chName'] = str(i['playerProfile']['firstName'] + i['playerProfile']['lastName'])
      item['contryEn'] = str(i['playerProfile']['countryEn'])
      item['contryCh'] = str(i['playerProfile']['country'])
      item['height'] = str(i['playerProfile']['height'])
      item['weight'] = str(i['playerProfile']['weight'])
      item['experience'] = str(i['playerProfile']['experience'])
      item['jerseyNo'] = str(i['playerProfile']['jerseyNo'])
      item['draftYear'] = str(i['playerProfile']['draftYear'])
      item['engTeam'] = str(i['teamProfile']['code'])
      item['chTeam'] = str(i['teamProfile']['displayAbbr'])
      item['position'] = str(i['playerProfile']['position'])
      item['displayConference'] = str(i['teamProfile']['displayConference'])
      item['division'] = str(i['teamProfile']['division'])
      # 打印爬取信息
      print("传输了",count,"条字段")
      count += 1
      # 将字段交回给引擎 -> 管道文件
      yield item

配置文件->开启管道文件

# Scrapy settings for nbaProject project
#
# For simplicity, this file contains only settings considered important or
# commonly used. You can find more settings consulting the documentation:
#
#   https://docs.scrapy.org/en/latest/topics/settings.html
#   https://docs.scrapy.org/en/latest/topics/downloader-middleware.html
#   https://docs.scrapy.org/en/latest/topics/spider-middleware.html
# ----------不做修改部分---------
BOT_NAME = 'nbaProject'

SPIDER_MODULES = ['nbaProject.spiders']
NEWSPIDER_MODULE = 'nbaProject.spiders'
# ----------不做修改部分---------

# Crawl responsibly by identifying yourself (and your website) on the user-agent
#USER_AGENT = 'nbaProject (+http://www.yourdomain.com)'

# Obey robots.txt rules
# ----------修改部分(可以自行查这是啥东西)---------
# ROBOTSTXT_OBEY = True
# ----------修改部分---------

# Configure maximum concurrent requests performed by Scrapy (default: 16)
#CONCURRENT_REQUESTS = 32

# Configure a delay for requests for the same website (default: 0)
# See https://docs.scrapy.org/en/latest/topics/settings.html#download-delay
# See also autothrottle settings and docs
#DOWNLOAD_DELAY = 3
# The download delay setting will honor only one of:
#CONCURRENT_REQUESTS_PER_DOMAIN = 16
#CONCURRENT_REQUESTS_PER_IP = 16

# Disable cookies (enabled by default)
#COOKIES_ENABLED = False

# Disable Telnet Console (enabled by default)
#TELNETCONSOLE_ENABLED = False

# Override the default request headers:
#DEFAULT_REQUEST_HEADERS = {
#  'Accept': 'text/html,application/xhtml+xml,application/xml;q=0.9,*/*;q=0.8',
#  'Accept-Language': 'en',
#}

# Enable or disable spider middlewares
# See https://docs.scrapy.org/en/latest/topics/spider-middleware.html
#SPIDER_MIDDLEWARES = {
#  'nbaProject.middlewares.NbaprojectSpiderMiddleware': 543,
#}

# Enable or disable downloader middlewares
# See https://docs.scrapy.org/en/latest/topics/downloader-middleware.html
#DOWNLOADER_MIDDLEWARES = {
#  'nbaProject.middlewares.NbaprojectDownloaderMiddleware': 543,
#}

# Enable or disable extensions
# See https://docs.scrapy.org/en/latest/topics/extensions.html
#EXTENSIONS = {
#  'scrapy.extensions.telnet.TelnetConsole': None,
#}

# Configure item pipelines
# See https://docs.scrapy.org/en/latest/topics/item-pipeline.html
# 开启管道文件
# ----------修改部分---------
ITEM_PIPELINES = {
  'nbaProject.pipelines.NbaprojectPipeline': 300,
}
# ----------修改部分---------
# Enable and configure the AutoThrottle extension (disabled by default)
# See https://docs.scrapy.org/en/latest/topics/autothrottle.html
#AUTOTHROTTLE_ENABLED = True
# The initial download delay
#AUTOTHROTTLE_START_DELAY = 5
# The maximum download delay to be set in case of high latencies
#AUTOTHROTTLE_MAX_DELAY = 60
# The average number of requests Scrapy should be sending in parallel to
# each remote server
#AUTOTHROTTLE_TARGET_CONCURRENCY = 1.0
# Enable showing throttling stats for every response received:
#AUTOTHROTTLE_DEBUG = False

# Enable and configure HTTP caching (disabled by default)
# See https://docs.scrapy.org/en/latest/topics/downloader-middleware.html#httpcache-middleware-settings
#HTTPCACHE_ENABLED = True
#HTTPCACHE_EXPIRATION_SECS = 0
#HTTPCACHE_DIR = 'httpcache'
#HTTPCACHE_IGNORE_HTTP_CODES = []
#HTTPCACHE_STORAGE = 'scrapy.extensions.httpcache.FilesystemCacheStorage'

管道文件 -> 将字段写进mysql

# Define your item pipelines here
#
# Don't forget to add your pipeline to the ITEM_PIPELINES setting
# See: https://docs.scrapy.org/en/latest/topics/item-pipeline.html

# useful for handling different item types with a single interface
from itemadapter import ItemAdapter

import pymysql
class NbaprojectPipeline:
	# 初始化函数
  def __init__(self):
    # 连接数据库 注意修改数据库信息
    self.connect = pymysql.connect(host='域名', user='用户名', passwd='密码',
                    db='数据库', port=端口号)
    # 获取游标
    self.cursor = self.connect.cursor()
    # 创建一个表用于存放item字段的数据
    createTableSql = """
              create table if not exists `nbaPlayer`(
              playerId INT UNSIGNED AUTO_INCREMENT,
              engName varchar(80),
              chName varchar(20),
              height varchar(20),
              weight varchar(20),
              contryEn varchar(50),
              contryCh varchar(20),
              experience int,
              jerseyNo int,
              draftYear int,
              engTeam varchar(50),
              chTeam varchar(50),
              position varchar(50),
              displayConference varchar(50),
              division varchar(50),
              primary key(playerId)
              )charset=utf8;
              """
    # 执行sql语句
    self.cursor.execute(createTableSql)
    self.connect.commit()
    print("完成了创建表的工作")
	#每次yield回来的字段会在这里做处理
  def process_item(self, item, spider):
  	# 打印item增加观赏性
  	print(item)
    # sql语句
    insert_sql = """
    insert into nbaPlayer(
    playerId, engName,
    chName,height,
    weight,contryEn,
    contryCh,experience,
    jerseyNo,draftYear
    ,engTeam,chTeam,
    position,displayConference,
    division
    ) VALUES (null,%s,%s,%s,%s,%s,%s,%s,%s,%s,%s,%s,%s,%s,%s)
    """
    # 执行插入数据到数据库操作
    # 参数(sql语句,用item字段里的内容替换sql语句的占位符)
    self.cursor.execute(insert_sql, (item['engName'], item['chName'], item['height'], item['weight']
                     , item['contryEn'], item['contryCh'], item['experience'], item['jerseyNo'],
                     item['draftYear'], item['engTeam'], item['chTeam'], item['position'],
                     item['displayConference'], item['division']))
    # 提交,不进行提交无法保存到数据库
    self.connect.commit()
    print("数据提交成功!")

启动爬虫

屏幕上滚动的数据

去数据库查看数据

简简单单就把球员数据爬回来啦~

到此这篇关于详解Python之Scrapy爬虫教程NBA球员数据存放到Mysql数据库的文章就介绍到这了,更多相关Scrapy爬虫员数据存放到Mysql内容请搜索我们以前的文章或继续浏览下面的相关文章希望大家以后多多支持我们!

(0)

相关推荐

  • 使用Python的Scrapy框架编写web爬虫的简单示例

    在这个教材中,我们假定你已经安装了Scrapy.假如你没有安装,你可以参考这个安装指南. 我们将会用开放目录项目(dmoz)作为我们例子去抓取. 这个教材将会带你走过下面这几个方面: 创造一个新的Scrapy项目 定义您将提取的Item 编写一个蜘蛛去抓取网站并提取Items. 编写一个Item Pipeline用来存储提出出来的Items Scrapy由Python写成.假如你刚刚接触Python这门语言,你可能想要了解这门语言起,怎么最好的利用这门语言.假如你已经熟悉其它类似的语言,想要快速

  • 讲解Python的Scrapy爬虫框架使用代理进行采集的方法

    1.在Scrapy工程下新建"middlewares.py" # Importing base64 library because we'll need it ONLY in case if the proxy we are going to use requires authentication import base64 # Start your middleware class class ProxyMiddleware(object): # overwrite process

  • Python使用Scrapy爬虫框架全站爬取图片并保存本地的实现代码

    大家可以在Github上clone全部源码. Github:https://github.com/williamzxl/Scrapy_CrawlMeiziTu Scrapy官方文档:http://scrapy-chs.readthedocs.io/zh_CN/latest/index.html 基本上按照文档的流程走一遍就基本会用了. Step1: 在开始爬取之前,必须创建一个新的Scrapy项目. 进入打算存储代码的目录中,运行下列命令: scrapy startproject CrawlMe

  • 零基础写python爬虫之使用Scrapy框架编写爬虫

    网络爬虫,是在网上进行数据抓取的程序,使用它能够抓取特定网页的HTML数据.虽然我们利用一些库开发一个爬虫程序,但是使用框架可以大大提高效率,缩短开发时间.Scrapy是一个使用Python编写的,轻量级的,简单轻巧,并且使用起来非常的方便.使用Scrapy可以很方便的完成网上数据的采集工作,它为我们完成了大量的工作,而不需要自己费大力气去开发. 首先先要回答一个问题. 问:把网站装进爬虫里,总共分几步? 答案很简单,四步: 新建项目 (Project):新建一个新的爬虫项目 明确目标(Item

  • 浅析python实现scrapy定时执行爬虫

    项目需要程序能够放在超算中心定时运行,于是针对scrapy写了一个定时爬虫的程序main.py ,直接放在scrapy的存储代码的目录中就能设定时间定时多次执行. 最简单的方法:直接使用Timer类 import time import os while True: os.system("scrapy crawl News") time.sleep(86400) #每隔一天运行一次 24*60*60=86400s或者,使用标准库的sched模块 import sched #初始化sch

  • Python爬虫框架Scrapy安装使用步骤

    一.爬虫框架Scarpy简介Scrapy 是一个快速的高层次的屏幕抓取和网页爬虫框架,爬取网站,从网站页面得到结构化的数据,它有着广泛的用途,从数据挖掘到监测和自动测试,Scrapy完全用Python实现,完全开源,代码托管在Github上,可运行在Linux,Windows,Mac和BSD平台上,基于Twisted的异步网络库来处理网络通讯,用户只需要定制开发几个模块就可以轻松的实现一个爬虫,用来抓取网页内容以及各种图片. 二.Scrapy安装指南 我们的安装步骤假设你已经安装一下内容:<1>

  • scrapy爬虫完整实例

    本文主要通过实例介绍了scrapy框架的使用,分享了两个例子,爬豆瓣文本例程 douban 和图片例程 douban_imgs ,具体如下. 例程1: douban 目录树 douban --douban --spiders --__init__.py --bookspider.py --douban_comment_spider.py --doumailspider.py --__init__.py --items.py --pipelines.py --settings.py --scrap

  • scrapy爬虫实例分享

    前一篇文章介绍了很多关于scrapy的进阶知识,不过说归说,只有在实际应用中才能真正用到这些知识.所以这篇文章就来尝试利用scrapy爬取各种网站的数据. 爬取百思不得姐 首先一步一步来,我们先从爬最简单的文本开始.这里爬取的就是百思不得姐的的段子,都是文本. 首先打开段子页面,用F12工具查看元素.然后用下面的命令打开scrapyshell. scrapy shell http://www.budejie.com/text/ 稍加分析即可得到我们要获取的数据,在介绍scrapy的第一篇文章中我

  • 深入剖析Python的爬虫框架Scrapy的结构与运作流程

    网络爬虫(Web Crawler, Spider)就是一个在网络上乱爬的机器人.当然它通常并不是一个实体的机器人,因为网络本身也是虚拟的东西,所以这个"机器人"其实也就是一段程序,并且它也不是乱爬,而是有一定目的的,并且在爬行的时候会搜集一些信息.例如 Google 就有一大堆爬虫会在 Internet 上搜集网页内容以及它们之间的链接等信息:又比如一些别有用心的爬虫会在 Internet 上搜集诸如 foo@bar.com 或者 foo [at] bar [dot] com 之类的东

  • Python的Scrapy爬虫框架简单学习笔记

     一.简单配置,获取单个网页上的内容. (1)创建scrapy项目 scrapy startproject getblog (2)编辑 items.py # -*- coding: utf-8 -*- # Define here the models for your scraped items # # See documentation in: # http://doc.scrapy.org/en/latest/topics/items.html from scrapy.item import

随机推荐