TensorFlow的reshape操作 tf.reshape的实现

初学tensorflow,如果写的不对的,请更正,谢谢!

tf.reshape(tensor, shape, name=None)

函数的作用是将tensor变换为参数shape的形式。

其中shape为一个列表形式,特殊的一点是列表中可以存在-1。-1代表的含义是不用我们自己指定这一维的大小,函数会自动计算,但列表中只能存在一个-1。(当然如果存在多个-1,就是一个存在多解的方程了)

好了我想说的重点还有一个就是根据shape如何变换矩阵。其实简单的想就是,

reshape(t, shape) => reshape(t, [-1]) => reshape(t, shape)

首先将矩阵t变为一维矩阵,然后再对矩阵的形式更改就可以了。

官方的例子:

# tensor 't' is [1, 2, 3, 4, 5, 6, 7, 8, 9]
# tensor 't' has shape [9]
reshape(t, [3, 3]) ==> [[1, 2, 3],
            [4, 5, 6],
            [7, 8, 9]]

# tensor 't' is [[[1, 1], [2, 2]],
#        [[3, 3], [4, 4]]]
# tensor 't' has shape [2, 2, 2]
reshape(t, [2, 4]) ==> [[1, 1, 2, 2],
            [3, 3, 4, 4]]

# tensor 't' is [[[1, 1, 1],
#         [2, 2, 2]],
#        [[3, 3, 3],
#         [4, 4, 4]],
#        [[5, 5, 5],
#         [6, 6, 6]]]
# tensor 't' has shape [3, 2, 3]
# pass '[-1]' to flatten 't'
reshape(t, [-1]) ==> [1, 1, 1, 2, 2, 2, 3, 3, 3, 4, 4, 4, 5, 5, 5, 6, 6, 6]

# -1 can also be used to infer the shape

# -1 is inferred to be 9:
reshape(t, [2, -1]) ==> [[1, 1, 1, 2, 2, 2, 3, 3, 3],
             [4, 4, 4, 5, 5, 5, 6, 6, 6]]
# -1 is inferred to be 2:
reshape(t, [-1, 9]) ==> [[1, 1, 1, 2, 2, 2, 3, 3, 3],
             [4, 4, 4, 5, 5, 5, 6, 6, 6]]
# -1 is inferred to be 3:
reshape(t, [ 2, -1, 3]) ==> [[[1, 1, 1],
               [2, 2, 2],
               [3, 3, 3]],
               [[4, 4, 4],
               [5, 5, 5],
               [6, 6, 6]]]

# tensor 't' is [7]
# shape `[]` reshapes to a scalar
reshape(t, []) ==> 7

在举几个例子或许就清楚了,有一个数组z,它的shape属性是(4, 4)

z = np.array([[1, 2, 3, 4],
     [5, 6, 7, 8],
     [9, 10, 11, 12],
     [13, 14, 15, 16]])
z.shape
(4, 4)

z.reshape(-1)

z.reshape(-1)
array([ 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16])

z.reshape(-1, 1)
也就是说,先前我们不知道z的shape属性是多少,但是想让z变成只有一列,行数不知道多少,通过`z.reshape(-1,1)`,Numpy自动计算出有12行,新的数组shape属性为(16, 1),与原来的(4, 4)配套。

z.reshape(-1,1)
 array([[ 1],
    [ 2],
    [ 3],
    [ 4],
    [ 5],
    [ 6],
    [ 7],
    [ 8],
    [ 9],
    [10],
    [11],
    [12],
    [13],
    [14],
    [15],
    [16]])

z.reshape(-1, 2)

newshape等于-1,列数等于2,行数未知,reshape后的shape等于(8, 2)

 z.reshape(-1, 2)
 array([[ 1, 2],
    [ 3, 4],
    [ 5, 6],
    [ 7, 8],
    [ 9, 10],
    [11, 12],
    [13, 14],
    [15, 16]])

到此这篇关于TensorFlow的reshape操作 tf.reshape的实现的文章就介绍到这了,更多相关TensorFlow的reshape操作 tf.reshape内容请搜索我们以前的文章或继续浏览下面的相关文章希望大家以后多多支持我们!

(0)

相关推荐

  • 对tf.reduce_sum tensorflow维度上的操作详解

    tensorflow中有很多在维度上的操作,本例以常用的tf.reduce_sum进行说明.官方给的api reduce_sum( input_tensor, axis=None, keep_dims=False, name=None, reduction_indices=None ) input_tensor:表示输入 axis:表示在那个维度进行sum操作. keep_dims:表示是否保留原始数据的维度,False相当于执行完后原始数据就会少一个维度. reduction_indices:

  • Tensorflow 利用tf.contrib.learn建立输入函数的方法

    在实际的业务中,可能会遇到很大量的特征,这些特征良莠不齐,层次不一,可能有缺失,可能有噪声,可能规模不一致,可能类型不一样,等等问题都需要我们在建模之前,先预处理特征或者叫清洗特征.那么这清洗特征的过程可能涉及多个步骤可能比较复杂,为了代码的简洁,我们可以将所有的预处理过程封装成一个函数,然后直接往模型中传入这个函数就可以啦~~~ 接下来我们看看究竟如何做呢? 1. 如何使用input_fn自定义输入管道 当使用tf.contrib.learn来训练一个神经网络时,可以将特征,标签数据直接输入到

  • 关于Tensorflow中的tf.train.batch函数的使用

    这两天一直在看tensorflow中的读取数据的队列,说实话,真的是很难懂.也可能我之前没这方面的经验吧,最早我都使用的theano,什么都是自己写.经过这两天的文档以及相关资料,并且请教了国内的师弟.今天算是有点小感受了.简单的说,就是计算图是从一个管道中读取数据的,录入管道是用的现成的方法,读取也是.为了保证多线程的时候从一个管道读取数据不会乱吧,所以这种时候 读取的时候需要线程管理的相关操作.今天我实验室了一个简单的操作,就是给一个有序的数据,看看读出来是不是有序的,结果发现是有序的,所以

  • Tensorflow中tf.ConfigProto()的用法详解

    参考Tensorflow Machine Leanrning Cookbook tf.ConfigProto()主要的作用是配置tf.Session的运算方式,比如gpu运算或者cpu运算 具体代码如下: import tensorflow as tf session_config = tf.ConfigProto( log_device_placement=True, inter_op_parallelism_threads=0, intra_op_parallelism_threads=0,

  • tensorflow 用矩阵运算替换for循环 用tf.tile而不写for的方法

    如下所示: # u [32,30,200] # u_logits [400,32,30] q_j_400 = [] for j in range(400): q_j_400.append(tf.squeeze(tf.matmul(tf.transpose(u,[0,2,1]),tf.expand_dims(tf.nn.softmax(u_logits[j]),-1)),[2])) # tf.matmul [32,200,30],[32,30,1] test_result = tf.stack(q

  • tensorflow实现在函数中用tf.Print输出中间值

    tensorflow由于其基于静态图的模式,导致写代码的时候很难调试,除了用官方的调试工具外,最直接的方法就是把中间结果输出出来查看,然而,直接用print函数只能输出tensor变量的形状,而不是数值,想要输出tensor的具体数值需要用tf.Print函数.网上有很多关于这个函数使用方法的说明,这里简要介绍: Print( input_, data, message=None, first_n=None, summarize=None, name=None ) 参数: input_:通过这个

  • tensorflow中tf.slice和tf.gather切片函数的使用

    tf.slice(input_, begin, size, name=None):按照指定的下标范围抽取连续区域的子集 tf.gather(params, indices, validate_indices=None, name=None):按照指定的下标集合从axis=0中抽取子集,适合抽取不连续区域的子集 输出: input = [[[1, 1, 1], [2, 2, 2]], [[3, 3, 3], [4, 4, 4]], [[5, 5, 5], [6, 6, 6]]] tf.slice(

  • tf.truncated_normal与tf.random_normal的详细用法

    本文介绍了tf.truncated_normal与tf.random_normal的详细用法,分享给大家,具体如下: tf.truncated_normal 复制代码 代码如下: tf.truncated_normal(shape, mean=0.0, stddev=1.0, dtype=tf.float32, seed=None, name=None) 从截断的正态分布中输出随机值. 生成的值服从具有指定平均值和标准偏差的正态分布,如果生成的值大于平均值2个标准偏差的值则丢弃重新选择. 在正态

  • tf.concat中axis的含义与使用详解

    tensorflow中tf.concat的axis的使用我一直理解的比较模糊,这次做个笔记理下自己的思路. import tensorflow as tf tf.enable_eager_execution() import numpy as np 先生成两个矩阵m1, 和m2, 大小为两行三列 m1 = np.random.rand(2,3) # m1.shape (2,3) m1 >>array([[0.44529968, 0.42451167, 0.07463199], [0.35787

  • tensorflow之变量初始化(tf.Variable)使用详解

    默认本系列的的读者已经初步熟悉tensorflow. 我们通过tf.Variable构造一个variable添加进图中,Variable()构造函数需要变量的初始值(是一个任意类型.任意形状的tensor),这个初始值指定variable的类型和形状.通过Variable()构造函数后,此variable的类型和形状固定不能修改了,但值可以用assign方法修改. 如果想修改variable的shape,可以使用一个assign op,令validate_shape=False. 通过Varia

随机推荐