python求numpy中array按列非零元素的平均值案例

输入:numpy的array

输出:一个一维的平均值array

import numpy as np

def non_zero_mean(np_arr):
 exist = (np_arr != 0)
 num = np_arr.sum(axis=1)
 den = exist.sum(axis=1)
 return num/den

如果要求按行的非零元素的平均值,把所有的 axis=1改成axis=0

补充知识:python dataframe 统计行列中零值的个数

1、按行统计,返回为一个series:

(df == 0).astype(int).sum(axis=1)

以上这篇python求numpy中array按列非零元素的平均值案例就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持我们。

(0)

相关推荐

  • Python过滤掉numpy.array中非nan数据实例

    代码 需要先导入pandas arr的数据类型为一维的np.array import pandas as pd arr[~pd.isnull(arr)] 补充知识:python numpy.mean() axis参数使用方法[sum(axis=*)是求和,mean(axis=*)是求平均值] 如下所示: import numpy as np X = np.array([[1, 2], [4, 5], [7, 8]]) print(np.mean(X, axis=0, keepdims=True)

  • Python简单计算数组元素平均值的方法示例

    本文实例讲述了Python简单计算数组元素平均值的方法.分享给大家供大家参考,具体如下: Python 环境:Python 2.7.12 x64 IDE :     Wing IDE Professional  5.1.12-1 题目:  求数组元素的平均值 实现代码: # coding:utf-8 #求数组元素的平均值 a=[1,4,8,10,12] b=len(a) sum=0 print "我们测试结果:" print "数组长度为:",b for i in

  • python获取array中指定元素的示例

    对于array,如2-D的array,如何取指定元素 设array为3*10的shape s = array([[ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9], [10, 11, 12, 13, 14, 15, 16, 17, 18, 19], [20, 21, 22, 23, 24, 25, 26, 27, 28, 29]]) 想取指定元素,下标索引即可如: >>> s[1][4] 扩展一下,若想同时取多个元素,则把行号,列号对应的元素封装成list,或者range &

  • python计算一个序列的平均值的方法

    本文实例讲述了python计算一个序列的平均值的方法.分享给大家供大家参考.具体如下: def average(seq, total=0.0): num = 0 for item in seq: total += item num += 1 return total / num 如果序列是数组或者元祖可以简单使用下面的代码 def average(seq): return float(sum(seq)) / len(seq) 希望本文所述对大家的Python程序设计有所帮助.

  • python求numpy中array按列非零元素的平均值案例

    输入:numpy的array 输出:一个一维的平均值array import numpy as np def non_zero_mean(np_arr): exist = (np_arr != 0) num = np_arr.sum(axis=1) den = exist.sum(axis=1) return num/den 如果要求按行的非零元素的平均值,把所有的 axis=1改成axis=0 补充知识:python dataframe 统计行列中零值的个数 1.按行统计,返回为一个serie

  • Python 实现Numpy中找出array中最大值所对应的行和列

    Python特别灵活,肯定方法不止一种,这里介绍一种我觉得比较简单的方法. 如下图,使用x == np.max(x) 获得一个掩模矩阵,然后使用where方法即可返回最大值对应的行和列. where返回一个长度为2的元组,第一个元素保存的是行号,第二个元素保存的是列号. 以上这篇Python 实现Numpy中找出array中最大值所对应的行和列就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持我们.

  • python numpy中array与pandas的DataFrame转换方式

    目录 numpy array与pandas的DataFrame转换 1.numpy的array转换为pandas的DataFrame 2.pandas的DataFrame转换为numpy的array Pandas DataFrame转换成Numpy中array的三种方法 1.使用DataFrame中的values方法 2.使用DataFrame中的as_matrix()方法 3.使用Numpy中的array方法 numpy array与pandas的DataFrame转换 1.numpy的arr

  • python使用numpy中的size()函数实例用法详解

    在python中,提到如何计算多维数组和矩阵,那一定会想到numpy.numpy定义了矩阵和数组,为它们提供了相关的运算.size中文解释为大家.尺寸的意思,如果想要统计矩阵元素个数,使用size()函数就可以解决. 1.Numpy size()函数 主要是用来统计矩阵元素个数,或矩阵某一维上的元素个数的函数. 2.使用语法 numpy.size(a, axis=None) 3.使用参数 a:输入的矩阵 axis:int型的可选参数,指定返回哪一维的元素个数.当没有指定时,返回整个矩阵的元素个数

  • 对numpy中array和asarray的区别详解

    array和asarray都可以将结构数据转化为ndarray,但是主要区别就是当数据源是ndarray时,array仍然会copy出一个副本,占用新的内存,但asarray不会. 举例说明: import numpy as np #example 1: data1=[[1,1,1],[1,1,1],[1,1,1]] arr2=np.array(data1) arr3=np.asarray(data1) data1[1][1]=2 print 'data1:\n',data1 print 'ar

  • Python数据分析Numpy中常用相关性函数

    目录 摘要: 一.股票相关性分析 二.多项式 三.求极值的知识 摘要: NumPy中包含大量的函数,这些函数的设计初衷是能更方便地使用,掌握解这些函数,可以提升自己的工作效率.这些函数包括数组元素的选取和多项式运算等.下面通过实例进行详细了解. 前述通过对某公司股票的收盘价的分析,了解了某些Numpy的一些函数.通常实际中,某公司的股价被另外一家公司的股价紧紧跟随,它们可能是同领域的竞争对手,也可能是同一公司下的不同的子公司.可能因两家公司经营的业务类型相同,面临同样的挑战,需要相同的原料和资源

  • 详解将Pandas中的DataFrame类型转换成Numpy中array类型的三种方法

    在用pandas包和numpy包对数据进行分析和计算时,经常用到DataFrame和array类型的数据.在对DataFrame类型的数据进行处理时,需要将其转换成array类型,是以下列出了三种转换方法. 首先导入numpy模块.pandas模块.创建一个DataFrame类型数据df import numpy as np import pandas as pd df=pd.DataFrame({'A':[1,2,3],'B':[4,5,6],'C':[7,8,9]}) 1.使用DataFra

  • python基础之Numpy库中array用法总结

    目录 前言 为什么要用numpy 数组的创建 生成均匀分布的array: 生成特殊数组 获取数组的属性 数组索引,切片,赋值 数组操作 输出数组 总结 前言 Numpy是Python的一个科学计算的库,提供了矩阵运算的功能,其一般与Scipy.matplotlib一起使用.其实,list已经提供了类似于矩阵的表示形式,不过numpy为我们提供了更多的函数. NumPy数组是一个多维数组对象,称为ndarray.数组的下标从0开始,同一个NumPy数组中所有元素的类型必须是相同的. >>>

  • 初识python的numpy模块

    目录 一.array类型 1.1array类型的基本使用 1.2对更高维度数据的处理 1.3Numpy创建特殊类型的array类型 1.3.1生成全为0或全为1的array 1.3.2np.arrange()和np.linspace() 1.4Numpy基础计算演示 二.线性代数相关 三.矩阵的高级函数-随机数矩阵 四.总结 Numpy是Numerical Python extensions的缩写,字面意思是Python数值计算扩展.Numpy是python中众多机器学习库的依赖,这些库通过Nu

  • Numpy中的shape、reshape函数的区别

    目录 1 shape()函数 2 reshape()函数 1 shape()函数 读取矩阵的长度,比如shape[0]就是读取矩阵第一维度的长度,相当于行数.它的输入参数可以是一个整数表示维度,也可以是一个矩阵.shape函数返回的是一个元组tuple,表示数组(矩阵)的维度/ 形状,例子如下: w.shape[0]返回的是w的行数 w.shape[1]返回的是w的列数 df.shape():查看行数和列数 1. 数组(矩阵)只有一个维度时,shape只有shape[0],返回的是该一维数组(矩

随机推荐