利用4行Python代码监测每一行程序的运行时间和空间消耗

Python是一个高层次的结合了解释性、编译性、互动性和面向对象的脚本语言,其具有高可扩展性和高可移植性,具有广泛的标准库,受到开发者的追捧,广泛应用于开发运维(DevOps)、数据科学、网站开发和安全。然而,它没有因速度和空间而赢得任何称赞,主要原因是Python是一门动态类型语言,每一个简单的操作都需要大量的指令才能完成。

所以这更加需要开发者在使用Python语言开发项目时协调好程序运行的时间和空间。

1、分析时间耗时

分析项目消耗的时间消耗,依托于line_profiler模块,其可以计算出执行每行代码所需占用的CPU时间。

第1步:安装line_profiler模块,我是用pip安装一直失败,所以下载到本地进行离线安装,指令如下所示:

pip install .\line_profiler-3.0.2-cp37-cp37m-win_amd64.whl

安装成功效果如下所示:

第2步:分析每行代码的运行时间,本案例Demo检测for循环一万次累加和while循环一万次累加的时间,并进行对比,实现代码如下所示:

from line_profiler import LineProfiler

def operation1():
 num=0
 for i in range(10000):
  num += 1

def operation2():
 num=0
 while(num < 10000):
  num += 1

if __name__ == "__main__":
 lprofiler = LineProfiler(operation1,operation2)
 lprofiler.run('operation1()')
 lprofiler.run('operation2()')
 lprofiler.print_stats()

运行程序,可见while循环速度稍微慢一些,效果如下所示:

2、分析空间耗时

memory_profiler模块可实现对Python项目中每一个代码的内存消耗进行分析和监控。

第1步:安装memory_profiler库文件,指令如下所示:

pip install memory_profiler

安装成功效果如下所示:

第2步:分析每行代码的空间消耗,本案例Demo检测for循环一万次累加和while循环一万次累加的消耗空间,并进行对比,实现代码如下所示:

from memory_profiler import profile

@profile
def operation1():
 num=0
 for i in range(10000):
  num += 1

@profile
def operation2():
 num=0
 while(num < 10000):
  num += 1

if __name__ == "__main__":
 operation1()
 operation2()

由于是简单运算消耗的内存是微乎其微的,效果如下所示:

本篇博文仅介绍以上两种模块,其实有更多有意思的模块可以实现对程序的运行时间和空间消耗的监测,感兴趣的朋友可以多多尝试。

到此这篇关于利用4行Python代码监测每一行程序的运行时间和空间消耗的文章就介绍到这了,更多相关python 监测程序运行时间空间消耗内容请搜索我们以前的文章或继续浏览下面的相关文章希望大家以后多多支持我们!

(0)

相关推荐

  • Python基于time模块求程序运行时间的方法

    本文实例讲述了Python基于time模块求程序运行时间的方法.分享给大家供大家参考,具体如下: 要记录程序的运行时间可以利用Unix系统中,1970.1.1到现在的时间的毫秒数,这个时间戳轻松完成. 方法是程序开始的时候取一次存入一个变量,在程序结束之后取一次再存入一个变量,与程序开始的时间戳相减则可以求出. Python中取这个时间戳的方法为引入time类之后,使用time.time();就能够拿出来.也就是Java中的System.currentTimeMillis(). 由于Python

  • python计算程序开始到程序结束的运行时间和程序运行的CPU时间

    执行时间 方法1 复制代码 代码如下: import datetimestarttime = datetime.datetime.now()#long runningendtime = datetime.datetime.now()print (endtime - starttime).seconds 方法 2 复制代码 代码如下: start = time.time()run_fun()end = time.time()print end-start 方法3 复制代码 代码如下: start

  • python记录程序运行时间的三种方法

    python记录程序运行时间的三种方法              这里提供了python记录程序运行时间的三种方法,并附有实现代码,最后进行比较,大家参考下: 方法1 import datetime starttime = datetime.datetime.now() #long running endtime = datetime.datetime.now() print (endtime - starttime).seconds 方法 2 start = time.time() run_f

  • Python计算程序运行时间的方法

    本文实例讲述了Python计算程序运行时间的方法.分享给大家供大家参考.具体实现方法如下: 复制代码 代码如下: import time def start_sleep():     time.sleep(3) if __name__ == '__main__':     #The start time     start = time.clock() #A program which will run for 3 seconds     start_sleep() #The End time

  • 10种检测Python程序运行时间、CPU和内存占用的方法

    在运行复杂的Python程序时,执行时间会很长,这时也许想提高程序的执行效率.但该怎么做呢? 首先,要有个工具能够检测代码中的瓶颈,例如,找到哪一部分执行时间比较长.接着,就针对这一部分进行优化. 同时,还需要控制内存和CPU的使用,这样可以在另一方面优化代码. 因此,在这篇文章中我将介绍7个不同的Python工具,来检查代码中函数的执行时间以及内存和CPU的使用. 1. 使用装饰器来衡量函数执行时间 有一个简单方法,那就是定义一个装饰器来测量函数的执行时间,并输出结果: import time

  • 利用4行Python代码监测每一行程序的运行时间和空间消耗

    Python是一个高层次的结合了解释性.编译性.互动性和面向对象的脚本语言,其具有高可扩展性和高可移植性,具有广泛的标准库,受到开发者的追捧,广泛应用于开发运维(DevOps).数据科学.网站开发和安全.然而,它没有因速度和空间而赢得任何称赞,主要原因是Python是一门动态类型语言,每一个简单的操作都需要大量的指令才能完成. 所以这更加需要开发者在使用Python语言开发项目时协调好程序运行的时间和空间. 1.分析时间耗时 分析项目消耗的时间消耗,依托于line_profiler模块,其可以计

  • 小 200 行 Python 代码制作一个换脸程序

    简介 在这篇文章中我将介绍如何写一个简短(200行)的 Python 脚本,来自动地将一幅图片的脸替换为另一幅图片的脸. 这个过程分四步: 检测脸部标记. 旋转.缩放.平移和第二张图片,以配合第一步. 调整第二张图片的色彩平衡,以适配第一张图片. 把第二张图像的特性混合在第一张图像中. 1.使用 dlib 提取面部标记 该脚本使用 dlib 的 Python 绑定来提取面部标记: Dlib 实现了 Vahid Kazemi 和 Josephine Sullivan 的<使用回归树一毫秒脸部对准>

  • 利用20行Python 代码实现加密通信

    目录 一.引言 二.加密技术 三.普通锁:简单的对称加密 四.不可篡改的指纹:哈希函数 五.矛与盾:非对称加密 六.真言:数字签名 七.总结 一.引言 网络上充满了窃听,我们的信息很容易被不怀好意的人获得,给我们造成不好的影响.如果你需要在网络上传输机密或者敏感的隐私信息,为了防备别有用心的人窃听,可能需要加密.而使用在线或者手机上的加密软件,可能不良软件更是泄露信息的温床.所以作为程序员的我们,完全可以自己来实现一个加密系统. 本文用 20 行 Python 代码来演示加密.解密.签名.验证的

  • 仅利用30行Python代码来展示X算法

    假如你对数独解法感兴趣,你可能听说过精确覆盖问题.给定全集 X 和 X 的子集的集合 Y ,存在一个 Y 的子集 Y*,使得 Y* 构成 X 的一种分割. 这儿有个Python写的例子. X = {1, 2, 3, 4, 5, 6, 7} Y = { 'A': [1, 4, 7], 'B': [1, 4], 'C': [4, 5, 7], 'D': [3, 5, 6], 'E': [2, 3, 6, 7], 'F': [2, 7]} 这个例子的唯一解是['B', 'D', 'F']. 精确覆盖问

  • 利用ImageAI库只需几行python代码实现目标检测

    什么是目标检测 目标检测关注图像中特定的物体目标,需要同时解决解决定位(localization) + 识别(Recognition).相比分类,检测给出的是对图片前景和背景的理解,我们需要从背景中分离出感兴趣的目标,并确定这一目标的描述(类别和位置),因此检测模型的输出是一个列表,列表的每一项使用一个数组给出检出目标的类别和位置(常用矩形检测框的坐标表示). 通俗的说,Object Detection的目的是在目标图中将目标用一个框框出来,并且识别出这个框中的是啥,而且最好的话是能够将图片的所

  • 1 行 Python 代码快速实现 FTP 服务器

    摘要: 当你想快速共享一个目录的时候,这是特别有用的,只需要1行代码即可实现. 当你想快速共享一个目录的时候,这是特别有用的,只需要1行代码即可实现. FTP 服务器,在此之前我都是使用Linux的vsftpd软件包来搭建FTP服务器的,现在发现了利用pyftpdlib可以更加简单的方法即可实现FTP服务器的功能. 环境要求 Python 2.7 Windows / Linux 环境搭建 一行代码实现FTP服务器 通过Python的-m选项作为一个简单的独立服务器来运行,当你想快速共享一个目录的

  • 21行Python代码实现拼写检查器

    引入 大家在使用谷歌或者百度搜索时,输入搜索内容时,谷歌总是能提供非常好的拼写检查,比如你输入 speling,谷歌会马上返回 spelling. 下面是用21行python代码实现的一个简易但是具备完整功能的拼写检查器. 代码 import re, collections def words(text): return re.findall('[a-z]+', text.lower()) def train(features): model = collections.defaultdict(

  • 50行Python代码实现人脸检测功能

    现在的人脸识别技术已经得到了非常广泛的应用,支付领域.身份验证.美颜相机里都有它的应用.用iPhone的同学们应该对下面的功能比较熟悉 iPhone的照片中有一个"人物"的功能,能够将照片里的人脸识别出来并分类,背后的原理也是人脸识别技术. 这篇文章主要介绍怎样用Python实现人脸检测.人脸检测是人脸识别的基础.人脸检测的目的是识别出照片里的人脸并定位面部特征点,人脸识别是在人脸检测的基础上进一步告诉你这个人是谁. 好了,介绍就到这里.接下来,开始准备我们的环境. 准备工作 本文的人

  • 10 行 Python 代码教你自动发送短信(不想回复工作邮件妙招)

    最近工作上有个需求,当爬虫程序遇到异常的时候,需要通知相应的人员进行修复.如果是国外可能是通过邮件的方式来通知,但国内除了万年不变的 qq 邮箱,大部分人都不会去再申请其他的账号,qq 邮箱也是闲的蛋疼的时候才会瞄一眼.你还记得上次看邮箱的内容是什么时候吗? 所以在国内最好的通知方式是通过手机短信,今天就教大家利用 python 10 行代码实现短信发送. Twilio 短信代理服务已经有非常多成熟的方案,比如国内的阿里云.这次我介绍的是国外的一个代理商「Twilio」,使用邮箱注册即送 15

  • 500行Python代码打造刷脸考勤系统

    需求分析 "员工刷脸考勤"系统,采用Python语言开发,可以通过摄像头添加员工面部信息,这里就涉及到两个具体的个问题,一个是应该以什么样的数据来标识每一个员工的面部信息,二是持久化地保存这些信息到数据库中去.更细地,还涉及表的设计;另一个基本要求是通过摄像头识别员工面部信息来完成考勤,这个问题基本可以通过遍历数据库里的员工面部数据与当前摄像头里的员工面部数据的比对来实现,但有一个问题就是假如摄像头里有多张人脸改怎么处理.扩展要求是导出每日的考勤表,可以拆分为两个部分,一个是存储考勤信

随机推荐