python实现拉普拉斯特征图降维示例

这种方法假设样本点在光滑的流形上,这一方法的计算数据的低维表达,局部近邻信息被最优的保存。以这种方式,可以得到一个能反映流形的几何结构的解。

步骤一:构建一个图G=(V,E),其中V={vi,i=1,2,3…n}是顶点的集合,E={eij}是连接顶点的vi和vj边,图的每一个节点vi与样本集X中的一个点xi相关。如果xi,xj相距较近,我们就连接vi,vj。也就是说在各自节点插入一个边eij,如果Xj在xi的k领域中,k是定义参数。

步骤二:每个边都与一个权值Wij相对应,没有连接点之间的权值为0,连接点之间的权值:

步骤三: ,实现广义本征分解:

使 是最小的m+1个本征值。忽略与 =0相关的本征向量,选取另外m个本征向量即为降维后的向量。

1、python实现拉普拉斯降维

def laplaEigen(dataMat,k,t):
 m,n=shape(dataMat)
 W=mat(zeros([m,m]))
 D=mat(zeros([m,m]))
 for i in range(m):
 k_index=knn(dataMat[i,:],dataMat,k)
 for j in range(k):
  sqDiffVector = dataMat[i,:]-dataMat[k_index[j],:]
  sqDiffVector=array(sqDiffVector)**2
  sqDistances = sqDiffVector.sum()
  W[i,k_index[j]]=math.exp(-sqDistances/t)
  D[i,i]+=W[i,k_index[j]]
 L=D-W
 Dinv=np.linalg.inv(D)
 X=np.dot(D.I,L)
 lamda,f=np.linalg.eig(X)
return lamda,f
def knn(inX, dataSet, k):
 dataSetSize = dataSet.shape[0]
 diffMat = tile(inX, (dataSetSize,1)) - dataSet
 sqDiffMat = array(diffMat)**2
 sqDistances = sqDiffMat.sum(axis=1)
 distances = sqDistances**0.5
 sortedDistIndicies = distances.argsort()
return sortedDistIndicies[0:k]
dataMat, color = make_swiss_roll(n_samples=2000)
lamda,f=laplaEigen(dataMat,11,5.0)
fm,fn =shape(f)
print 'fm,fn:',fm,fn
lamdaIndicies = argsort(lamda)
first=0
second=0
print lamdaIndicies[0], lamdaIndicies[1]
for i in range(fm):
 if lamda[lamdaIndicies[i]].real>1e-5:
 print lamda[lamdaIndicies[i]]
 first=lamdaIndicies[i]
 second=lamdaIndicies[i+1]
 break
print first, second
redEigVects = f[:,lamdaIndicies]
fig=plt.figure('origin')
ax1 = fig.add_subplot(111, projection='3d')
ax1.scatter(dataMat[:, 0], dataMat[:, 1], dataMat[:, 2], c=color,cmap=plt.cm.Spectral)
fig=plt.figure('lowdata')
ax2 = fig.add_subplot(111)
ax2.scatter(f[:,first], f[:,second], c=color, cmap=plt.cm.Spectral)
plt.show() 

2、拉普拉斯降维实验

用如下参数生成实验数据存在swissdata.dat里面:

def make_swiss_roll(n_samples=100, noise=0.0, random_state=None):
 #Generate a swiss roll dataset.
 t = 1.5 * np.pi * (1 + 2 * random.rand(1, n_samples))
 x = t * np.cos(t)
 y = 83 * random.rand(1, n_samples)
 z = t * np.sin(t)
 X = np.concatenate((x, y, z))
 X += noise * random.randn(3, n_samples)
 X = X.T
 t = np.squeeze(t)
return X, t 

实验结果如下:

以上这篇python实现拉普拉斯特征图降维示例就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持我们。

(0)

相关推荐

  • python机器学习之贝叶斯分类

    一.贝叶斯分类介绍 贝叶斯分类器是一个统计分类器.它们能够预测类别所属的概率,如:一个数据对象属于某个类别的概率.贝叶斯分类器是基于贝叶斯定理而构造出来的.对分类方法进行比较的有关研究结果表明:简单贝叶斯分类器(称为基本贝叶斯分类器)在分类性能上与决策树和神经网络都是可比的.在处理大规模数据库时,贝叶斯分类器已表现出较高的分类准确性和运算性能.基本贝叶斯分类器假设一个指定类别中各属性的取值是相互独立的.这一假设也被称为:类别条件独立,它可以帮助有效减少在构造贝叶斯分类器时所需要进行的计算. 二.

  • 朴素贝叶斯Python实例及解析

    本文实例为大家分享了Python朴素贝叶斯实例代码,供大家参考,具体内容如下 #-*- coding: utf-8 -*- #添加中文注释 from numpy import * #过滤网站的恶意留言 #样本数据 def loadDataSet(): postingList=[['my', 'dog', 'has', 'flea', 'problems', 'help', 'please'], ['maybe', 'not', 'take', 'him', 'to', 'dog', 'park'

  • Python实现的朴素贝叶斯分类器示例

    本文实例讲述了Python实现的朴素贝叶斯分类器.分享给大家供大家参考,具体如下: 因工作中需要,自己写了一个朴素贝叶斯分类器. 对于未出现的属性,采取了拉普拉斯平滑,避免未出现的属性的概率为零导致整个条件概率都为零的情况出现. 朴素贝叶斯的基本原理网上很容易查到,这里不再叙述,直接附上代码 因工作中需要,自己写了一个朴素贝叶斯分类器.对于未出现的属性,采取了拉普拉斯平滑,避免未出现的属性的概率为零导致整个条件概率都为零的情况出现. class NBClassify(object): def _

  • python实现拉普拉斯特征图降维示例

    这种方法假设样本点在光滑的流形上,这一方法的计算数据的低维表达,局部近邻信息被最优的保存.以这种方式,可以得到一个能反映流形的几何结构的解. 步骤一:构建一个图G=(V,E),其中V={vi,i=1,2,3-n}是顶点的集合,E={eij}是连接顶点的vi和vj边,图的每一个节点vi与样本集X中的一个点xi相关.如果xi,xj相距较近,我们就连接vi,vj.也就是说在各自节点插入一个边eij,如果Xj在xi的k领域中,k是定义参数. 步骤二:每个边都与一个权值Wij相对应,没有连接点之间的权值为

  • python绘制简单折线图代码示例

    1.画最简单的直线图 代码如下: import numpy as np import matplotlib.pyplot as plt x=[0,1] y=[0,1] plt.figure() plt.plot(x,y) plt.savefig("easyplot.jpg") 结果如下: 代码解释: #x轴,y轴 x=[0,1] y=[0,1] #创建绘图对象 plt.figure() #在当前绘图对象进行绘图(两个参数是x,y轴的数据) plt.plot(x,y) #保存图象 plt

  • 使用Python绘制台风轨迹图的示例代码

    参考: 1.Basemap绘制中国地图 2.Basemap生成的图中绘制轨迹 使用CMA热带气旋最佳路径数据集,对我国周边的台风进行绘制 import re import os import numpy as np import matplotlib.pyplot as plt from mpl_toolkits.basemap import Basemap path=r"E:\Computer Science\数学建模\第二次模拟赛题\附件" files= os.listdir(pa

  • python绘制分布折线图的示例

    用Python 绘制分布(折线)图,使用的是 plot()函数. 一个简单的例子: # encoding=utf-8 import matplotlib.pyplot as plt from pylab import * # 支持中文 mpl.rcParams['font.sans-serif'] = ['SimHei'] # 'mentioned0cluster', names = ['mentioned1cluster','mentioned2cluster', 'mentioned3clu

  • python matplotlib绘制三维图的示例

    作者:catmelo 本文版权归作者所有 链接:https://www.cnblogs.com/catmelo/p/4162101.html 本文参考官方文档:http://matplotlib.org/mpl_toolkits/mplot3d/tutorial.html 起步 新建一个matplotlib.figure.Figure对象,然后向其添加一个Axes3D类型的axes对象. 其中Axes3D对象的创建,类似其他axes对象,只不过使用projection='3d'关键词. impo

  • Python通过matplotlib画双层饼图及环形图简单示例

    (1) 饼图(pie),即在一个圆圈内分成几块,显示不同数据系列的占比大小,这也是我们在日常数据的图形展示中最常用的图形之一. 在python中常用matplotlib的pie来绘制,基本命令如下所示(python3.X版本): vals = [1, 2, 3, 4]#创建数据系列 fig, ax = plt.subplots()#创建子图 labels = 'A', 'B', 'C', 'D' colors = ['yellowgreen', 'gold', 'lightskyblue', '

  • Python绘制组合图的示例

    绘制组合图: 组合图就是将多个形状,组合到⼀个图形中,主要作⽤是节约作图的空间,节省读者的时间,从⽽提⾼ 信息传达的效率. import pandas as pd import numpy as np import matplotlib.pyplot as plt def plot_combination1(): sale = pd.read_excel('./data/每月目标销售额和实际销售额.xlsx',header=0,index_col=0) # 设置正常显示中文标签 plt.rcPa

  • python绘制趋势图的示例

    import matplotlib.pyplot as plt #plt用于显示图片 import matplotlib.image as mping #mping用于读取图片 import datetime as dt import matplotlib.dates as mdates from pylab import * def draw_trend_chart(dates,y): mpl.rcParams['font.sans-serif'] = ['SimHei'] #指定默认字体 m

  • python使用matplotlib绘制折线图的示例代码

    示例代码如下: #!/usr/bin/python #-*- coding: utf-8 -*- import matplotlib.pyplot as plt # figsize - 图像尺寸(figsize=(10,10)) # facecolor - 背景色(facecolor="blue") # dpi - 分辨率(dpi=72) fig = plt.figure(figsize=(10,10),facecolor="blue") #figsize默认为4,

  • python学习之使用Matplotlib画实时的动态折线图的示例代码

    有时,为了方便看数据的变化情况,需要画一个动态图来看整体的变化情况.主要就是用Matplotlib库. 首先,说明plot函数的说明. plt.plot(x,y,format_string,**kwargs) x是x轴数据,y是y轴数据.x与y维度一定要对应. format_string控制曲线的格式字串 下面详细说明: color(c):线条颜色 linestyle(ls):线条样式 linewidth(lw):线的粗细 关于标记的一些参数: marker:标记样式 markeredgecol

随机推荐