50行Python代码实现视频中物体颜色识别和跟踪(必须以红色为例)

目前计算机视觉(CV)与自然语言处理(NLP)及语音识别并列为人工智能三大热点方向,而计算机视觉中的对象检测(objectdetection)应用非常广泛,比如自动驾驶、视频监控、工业质检、医疗诊断等场景。

目标检测的根本任务就是将图片或者视频中感兴趣的目标提取出来,目标的识别可以基于颜色、纹理、形状。其中颜色属性运用十分广泛,也比较容易实现。下面就向大家分享一个我做的小实验———通过OpenCV的Python接口来实现从视频中进行颜色识别和跟踪。

下面就是我们完整的代码实现(已调试运行):

import numpy as np
import cv2
font = cv2.FONT_HERSHEY_SIMPLEX
lower_green = np.array([35, 110, 106]) # 绿色范围低阈值
upper_green = np.array([77, 255, 255]) # 绿色范围高阈值
lower_red = np.array([0, 127, 128]) # 红色范围低阈值
upper_red = np.array([10, 255, 255]) # 红色范围高阈值
#需要更多颜色,可以去百度一下HSV阈值!
# cap = cv2.VideoCapture('1.mp4') # 打开视频文件
cap = cv2.VideoCapture(0)#打开USB摄像头
if (cap.isOpened()): # 视频打开成功
 flag = 1
else:
 flag = 0
num = 0
if (flag):
 while (True):
 ret, frame = cap.read() # 读取一帧

 if ret == False: # 读取帧失败
  break
 hsv_img = cv2.cvtColor(frame, cv2.COLOR_BGR2HSV)
 mask_green = cv2.inRange(hsv_img, lower_green, upper_green) # 根据颜色范围删选
 mask_red = cv2.inRange(hsv_img, lower_red, upper_red)
 # 根据颜色范围删选
 mask_green = cv2.medianBlur(mask_green, 7) # 中值滤波
 mask_red = cv2.medianBlur(mask_red, 7) # 中值滤波
 mask = cv2.bitwise_or(mask_green, mask_red)
 mask_green, contours, hierarchy = cv2.findContours(mask_green, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_NONE)
 mask_red, contours2, hierarchy2 = cv2.findContours(mask_red, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_NONE)

 for cnt in contours:
  (x, y, w, h) = cv2.boundingRect(cnt)
  cv2.rectangle(frame, (x, y), (x + w, y + h), (0, 255, 255), 2)
  cv2.putText(frame, "Green", (x, y - 5), font, 0.7, (0, 255, 0), 2)

 for cnt2 in contours2:
  (x2, y2, w2, h2) = cv2.boundingRect(cnt2)
  cv2.rectangle(frame, (x2, y2), (x2 + w2, y2 + h2), (0, 255, 255), 2)
  cv2.putText(frame, "Red", (x2, y2 - 5), font, 0.7, (0, 0, 255), 2)
 num = num + 1
 cv2.imshow("dection", frame)
 cv2.imwrite("imgs/%d.jpg"%num, frame)
 if cv2.waitKey(20) & 0xFF == 27:
  break
cv2.waitKey(0)
cv2.destroyAllWindows()

如图所示,我们将会检测到红色区域

最终的效果图:

总结

以上所述是小编给大家介绍的50行Python代码实现视频中物体颜色识别和跟踪,希望对大家有所帮助,如果大家有任何疑问请给我留言,小编会及时回复大家的。在此也非常感谢大家对我们网站的支持!
如果你觉得本文对你有帮助,欢迎转载,烦请注明出处,谢谢!

(0)

相关推荐

  • python微信跳一跳系列之棋子定位颜色识别

    python微信跳一跳,前言 这是python玩跳一跳系列博文中一篇,主要内容是用颜色识别的方法来进行跳跳小人的定位. 颜色识别 过观察,我们可以发现,尽管背景和棋子在不停的变化,但跳跳小人的形状和颜色基本保持不变,对于形状,我们在上一篇博文中已经采用模板匹配的方法来进行识别定位,效果非常好.这一篇博文就来对颜色识别进行验证. 基本思路 用HSV颜色空间对输入的图片进行处理,用某种指定的颜色进行蒙版mask处理进而得到二值化的黑白图像,膨胀和腐蚀后去除噪点,对轮廓区域进行计算,画出圆心和质心位置

  • OpenCV3.0+Python3.6实现特定颜色的物体追踪

    一.环境 win10.Python3.6.OpenCV3.x:编译器:pycharm5.0.3 二.实现目标 根据需要追踪的物体颜色,设定阈值,在视频中框选出需要追踪的物体. 三.实现步骤 1)根据需要追踪的物体颜色,设定颜色阈值,获取追踪物体的掩膜 代码:generate_threshold.py # -*- coding : utf-8 -*- # Author: Tom Yu import cv2 import numpy as np cap = cv2.VideoCapture(0)#获

  • 浅谈Python3识别判断图片主要颜色并和颜色库进行对比的方法

    [更新]主要提供两种方案: 方案一:(参考网上代码,感觉实用性不是很强)使用PIL截取图像,然后将RGB转为HSV进行判断,统计判断颜色,最后输出RGB值 方案二:使用opencv库函数进行处理.(效果不错) 1.将图片颜色转为hsv, 2.使用cv2.inRange()函数进行背景颜色过滤 3.将过滤后的颜色进行二值化处理 4.进行形态学腐蚀膨胀,cv2.dilate() 5.统计白色区域面积 详解:方案一: 转载出处:www.jb51.net/article/62526.htm 项目实际需要

  • 50行Python代码实现视频中物体颜色识别和跟踪(必须以红色为例)

    目前计算机视觉(CV)与自然语言处理(NLP)及语音识别并列为人工智能三大热点方向,而计算机视觉中的对象检测(objectdetection)应用非常广泛,比如自动驾驶.视频监控.工业质检.医疗诊断等场景. 目标检测的根本任务就是将图片或者视频中感兴趣的目标提取出来,目标的识别可以基于颜色.纹理.形状.其中颜色属性运用十分广泛,也比较容易实现.下面就向大家分享一个我做的小实验---通过OpenCV的Python接口来实现从视频中进行颜色识别和跟踪. 下面就是我们完整的代码实现(已调试运行): i

  • 50行Python代码实现人脸检测功能

    现在的人脸识别技术已经得到了非常广泛的应用,支付领域.身份验证.美颜相机里都有它的应用.用iPhone的同学们应该对下面的功能比较熟悉 iPhone的照片中有一个"人物"的功能,能够将照片里的人脸识别出来并分类,背后的原理也是人脸识别技术. 这篇文章主要介绍怎样用Python实现人脸检测.人脸检测是人脸识别的基础.人脸检测的目的是识别出照片里的人脸并定位面部特征点,人脸识别是在人脸检测的基础上进一步告诉你这个人是谁. 好了,介绍就到这里.接下来,开始准备我们的环境. 准备工作 本文的人

  • 20行Python代码实现视频字符化功能

    我们经常在B站上看到一些字符鬼畜视频,主要就是将一个视频转换成字符的样子展现出来.看起来是非常高端,但是实际实现起来确是非常简单,我们只需要接触opencv模块,就能很快的实现视频字符化.但是在此之前,我们先看看我们实现的效果是怎样的: 上面就是截取的一部分效果图,下面开始进入我们的主题. 一.OpenCV的安装及图片读取 在Python中我们只需要用pip安装即可,我们在控制台执行下列语句: pip install opencv-python 安装完成就可以开始使用.我们先读取一个图片: im

  • 只用50行Python代码爬取网络美女高清图片

    一.技术路线 requests:网页请求 BeautifulSoup:解析html网页 re:正则表达式,提取html网页信息 os:保存文件 import re import requests import os from bs4 import BeautifulSoup 二.获取网页信息 常规操作,获取网页信息的固定格式,返回的字符串格式的网页内容,其中headers参数可模拟人为的操作,'欺骗'网站不被发现 def getHtml(url): #固定格式,获取html内容 headers

  • 50行Python代码获取高考志愿信息的实现方法

    最近遇到个任务,需要将高考志愿信息保存成Excel表格,BOSS丢给我一个网址表格之后就让我自己干了.虽然我以前也学习过Python编写爬虫的知识,不过时间长了忘了,于是摸索了一天之后终于完成了任务.不得不说,Python干这个还是挺容易的,最后写完一看代码,只用了50行就完成了任务. 准备工作 首先明确一下任务.首先我们要从网址表格中读取到一大串网址,然后访问每个网址,获取到页面上的学校信息,然后将它们在写到另一个Excel中.显然,我们需要一个爬虫库和一个Excel库来帮助我们完成任务. 第

  • 使用50行Python代码从零开始实现一个AI平衡小游戏

    集智导读: 本文会为大家展示机器学习专家 Mike Shi 如何用 50 行 Python 代码创建一个 AI,使用增强学习技术,玩耍一个保持杆子平衡的小游戏.所用环境为标准的 OpenAI Gym,只使用 Numpy 来创建 agent. 各位看官好,我(作者 Mike Shi--译者注)将在本文教大家如何用 50 行 Python 代码,教会 AI 玩一个简单的平衡游戏.我们会用到标准的 OpenAI Gym 作为测试环境,仅用 Numpy 创建我们的 AI,别的不用. 这个小游戏就是经典的

  • 基于opencv实现视频中的颜色识别功能

    目录 颜色识别的原理 opencv中的颜色模型 颜色识别的实现(c++) 颜色识别的原理 opencv中的颜色模型 RGB RGB具有三个通道其,分别表示红色通道®,绿色通道(G),蓝色通道(B),3个通道在opencv中的取值均为0~255,它的颜色由3个通道的取值来共同决定,因此如果使用RGB图像来进行颜色的识别,会丢失很多的颜色. HSV HSV具有三个通道,其分别表示色调(H),饱和度(S),亮度(V),3个通道在opencv中的取值分别如下: H:0~180 S:0~255 V:0~2

  • 仅用50行Python代码实现一个简单的代理服务器

    之前遇到一个场景是这样的: 我在自己的电脑上需要用mongodb图形客户端,但是mongodb的服务器地址没有对外网开放,只能通过先登录主机A,然后再从A连接mongodb服务器B. 本来想通过ssh端口转发的,但是我没有从机器A连接ssh到B的权限.于是就自己用python写一个. 原理很简单. 1.开一个socket server监听连接请求 2.每接受一个客户端的连接请求,就往要转发的地址建一条连接请求.即client->proxy->forward.proxy既是socket服务端(监

  • 如何通过50行Python代码获取公众号全部文章

    前言 我们平时阅读公众号的文章会遇到一个问题--阅读历史文章体验不好. 我们知道爬取公众号的方式常见的有两种:通过搜狗搜索去获取,缺点是只能获取最新的十条推送文章.通过微信公众号的素材管理,获取公众号文章.缺点是需要申请自己的公众号. 今天介绍一种通过抓包PC端微信的方式去获取公众号文章的方法.相比其他的方法非常方便. 如上图,通过抓包工具获取微信的网络信息请求,我们发现每次下拉刷新文章的时候都会请求 mp.weixin.qq.com/mp/xxx (公众号不让添加主页链接,xxx表示profi

  • 10 行Python 代码实现 AI 目标检测技术【推荐】

    只需10行Python代码,我们就能实现计算机视觉中目标检测. from imageai.Detection import ObjectDetection import os execution_path = os.getcwd() detector = ObjectDetection() detector.setModelTypeAsRetinaNet() detector.setModelPath( os.path.join(execution_path , "resnet50_coco_b

随机推荐