pytorch简介

一.Pytorch是什么?

  Pytorch是torch的python版本,是由Facebook开源的神经网络框架,专门针对 GPU 加速的深度神经网络(DNN)编程。Torch 是一个经典的对多维矩阵数据进行操作的张量(tensor )库,在机器学习和其他数学密集型应用有广泛应用。与Tensorflow的静态计算图不同,pytorch的计算图是动态的,可以根据计算需要实时改变计算图。但由于Torch语言采用 Lua,导致在国内一直很小众,并逐渐被支持 Python 的 Tensorflow 抢走用户。作为经典机器学习库 Torch 的端口,PyTorch 为 Python 语言使用者提供了舒适的写代码选择。

二.为什么选择 Pytorch?

1.简洁:

  PyTorch的设计追求最少的封装,尽量避免重复造轮子。不像 TensorFlow 中充斥着session、graph、operation、name_scope、variable、tensor、layer等全新的概念,PyTorch 的设计遵循tensor→variable(autograd)→nn.Module 三个由低到高的抽象层次,分别代表高维数组(张量)、自动求导(变量)和神经网络(层/模块),而且这三个抽象之间联系紧密,可以同时进行修改和操作。 简洁的设计带来的另外一个好处就是代码易于理解。PyTorch的源码只有TensorFlow的十分之一左右,更少的抽象、更直观的设计使得PyTorch的源码十分易于阅读。

2.速度:

  PyTorch 的灵活性不以速度为代价,在许多评测中,PyTorch 的速度表现胜过 TensorFlow和Keras 等框架。框架的运行速度和程序员的编码水平有极大关系,但同样的算法,使用PyTorch实现的那个更有可能快过用其他框架实现的。

3.易用:

  PyTorch 是所有的框架中面向对象设计的最优雅的一个。PyTorch的面向对象的接口设计来源于Torch,而Torch的接口设计以灵活易用而著称,Keras作者最初就是受Torch的启发才开发了Keras。PyTorch继承了Torch的衣钵,尤其是API的设计和模块的接口都与Torch高度一致。PyTorch的设计最符合人们的思维,它让用户尽可能地专注于实现自己的想法,即所思即所得,不需要考虑太多关于框架本身的束缚。

4.活跃的社区:

  PyTorch 提供了完整的文档,循序渐进的指南,作者亲自维护的论坛 供用户交流和求教问题。Facebook 人工智能研究院对 PyTorch 提供了强力支持,作为当今排名前三的深度学习研究机构,FAIR的支持足以确保PyTorch获得持续的开发更新,不至于像许多由个人开发的框架那样昙花一现。

三.PyTorch 的架构是怎样的?

  PyTorch(Caffe2) 通过混合前端,分布式训练以及工具和库生态系统实现快速,灵活的实验和高效生产。PyTorch 和 TensorFlow 具有不同计算图实现形式,TensorFlow 采用静态图机制(预定义后再使用),PyTorch采用动态图机制(运行时动态定义)。PyTorch 具有以下高级特征:

  • 混合前端:新的混合前端在急切模式下提供易用性和灵活性,同时无缝转换到图形模式,以便在C ++运行时环境中实现速度,优化和功能。   
  • 分布式训练:通过利用本地支持集合操作的异步执行和可从Python和C ++访问的对等通信,优化了性能。   
  • Python优先: PyTorch为了深入集成到Python中而构建的,因此它可以与流行的库和Cython和Numba等软件包一起使用。  
  • 丰富的工具和库:活跃的研究人员和开发人员社区建立了丰富的工具和库生态系统,用于扩展PyTorch并支持从计算机视觉到强化学习等领域的开发。   
  • 本机ONNX支持:以标准ONNX(开放式神经网络交换)格式导出模型,以便直接访问与ONNX兼容的平台,运行时,可视化工具等。   
  • C++前端:C++前端是PyTorch的纯C++接口,它遵循已建立的Python前端的设计和体系结构。它旨在实现高性能,低延迟和裸机C++应用程序的研究。 使用GPU和CPU优化的深度学习张量库。

四.Pytorch 与 tensorflow 之间的差异在哪里?

  上面也将了PyTorch 最大优势是建立的神经网络是动态的, 对比静态的 Tensorflow, 它能更有效地处理一些问题, 比如说 RNN 变化时间长度的输出。各有各的优势和劣势。两者都是大公司发布的, Tensorflow(Google)宣称在分布式训练上下了很大的功夫, 那就默认 Tensorflow 在分布式训练上要超出 Pytorch(Facebook),还有tensorboard可视化工具, 但是 Tensorflow 的静态计算图使得在 RNN 上有一点点被动 (虽然它用其他途径解决了), 不过用 PyTorch 的时候, 会对这种动态的 RNN 有更好的理解。而且 Tensorflow 的高度工业化, 它的底层代码很难看懂, Pytorch 好那么一点点, 如果深入 PytorchAPI, 至少能比看 Tensorflow 多看懂一点点 Pytorch 的底层在干啥。

五.Pytorch有哪些常用工具包?

  • torch :类似 NumPy 的张量库,强 GPU 支持 ;   
  • torch.autograd :基于 tape 的自动区别库,支持 torch 之中的所有可区分张量运行;   
  • torch.nn :为最大化灵活性未涉及、与 autograd 深度整合的神经网络库;   
  • torch.optim:与 torch.nn 一起使用的优化包,包含 SGD、RMSProp、LBFGS、Adam 等标准优化方式;
  • torch.multiprocessing: python 多进程并发,进程之间 torch Tensors 的内存共享;   
  • torch.utils:数据载入器。具有训练器和其他便利功能;   
  • torch.legacy(.nn/.optim) :处于向后兼容性考虑,从 Torch 移植来的 legacy 代码;

到此这篇关于pytorch简介的文章就介绍到这了,更多相关pytorch简介内容请搜索我们以前的文章或继续浏览下面的相关文章希望大家以后多多支持我们!

(0)

相关推荐

  • Pytorch使用MNIST数据集实现基础GAN和DCGAN详解

    原始生成对抗网络Generative Adversarial Networks GAN包含生成器Generator和判别器Discriminator,数据有真实数据groundtruth,还有需要网络生成的"fake"数据,目的是网络生成的fake数据可以"骗过"判别器,让判别器认不出来,就是让判别器分不清进入的数据是真实数据还是fake数据.总的来说是:判别器区分真实数据和fake数据的能力越强越好:生成器生成的数据骗过判别器的能力越强越好,这个是矛盾的,所以只能

  • pytorch简介

    一.Pytorch是什么?   Pytorch是torch的python版本,是由Facebook开源的神经网络框架,专门针对 GPU 加速的深度神经网络(DNN)编程.Torch 是一个经典的对多维矩阵数据进行操作的张量(tensor )库,在机器学习和其他数学密集型应用有广泛应用.与Tensorflow的静态计算图不同,pytorch的计算图是动态的,可以根据计算需要实时改变计算图.但由于Torch语言采用 Lua,导致在国内一直很小众,并逐渐被支持 Python 的 Tensorflow

  • PyTorch CNN实战之MNIST手写数字识别示例

    简介 卷积神经网络(Convolutional Neural Network, CNN)是深度学习技术中极具代表的网络结构之一,在图像处理领域取得了很大的成功,在国际标准的ImageNet数据集上,许多成功的模型都是基于CNN的. 卷积神经网络CNN的结构一般包含这几个层: 输入层:用于数据的输入 卷积层:使用卷积核进行特征提取和特征映射 激励层:由于卷积也是一种线性运算,因此需要增加非线性映射 池化层:进行下采样,对特征图稀疏处理,减少数据运算量. 全连接层:通常在CNN的尾部进行重新拟合,减

  • PyTorch搭建多项式回归模型(三)

    PyTorch基础入门三:PyTorch搭建多项式回归模型 1)理论简介 对于一般的线性回归模型,由于该函数拟合出来的是一条直线,所以精度欠佳,我们可以考虑多项式回归来拟合更多的模型.所谓多项式回归,其本质也是线性回归.也就是说,我们采取的方法是,提高每个属性的次数来增加维度数.比如,请看下面这样的例子: 如果我们想要拟合方程: 对于输入变量和输出值,我们只需要增加其平方项.三次方项系数即可.所以,我们可以设置如下参数方程: 可以看到,上述方程与线性回归方程并没有本质区别.所以我们可以采用线性回

  • 运用PyTorch动手搭建一个共享单车预测器

    本文摘自 <深度学习原理与PyTorch实战> 我们将从预测某地的共享单车数量这个实际问题出发,带领读者走进神经网络的殿堂,运用PyTorch动手搭建一个共享单车预测器,在实战过程中掌握神经元.神经网络.激活函数.机器学习等基本概念,以及数据预处理的方法.此外,还会揭秘神经网络这个"黑箱",看看它如何工作,哪个神经元起到了关键作用,从而让读者对神经网络的运作原理有更深入的了解. 3.1 共享单车的烦恼 大约从2016年起,我们的身边出现了很多共享单车.五颜六色.各式各样的共

  • Pytorch之Variable的用法

    1.简介 torch.autograd.Variable是Autograd的核心类,它封装了Tensor,并整合了反向传播的相关实现 Variable和tensor的区别和联系 Variable是篮子,而tensor是鸡蛋,鸡蛋应该放在篮子里才能方便拿走(定义variable时一个参数就是tensor) Variable这个篮子里除了装了tensor外还有requires_grad参数,表示是否需要对其求导,默认为False Variable这个篮子呢,自身有一些属性 比如grad,梯度vari

  • Pytorch之卷积层的使用详解

    1.简介(torch.nn下的) 卷积层主要使用的有3类,用于处理不同维度的数据 参数 Parameters: in_channels(int) – 输入信号的通道 out_channels(int) – 卷积产生的通道 kerner_size(int or tuple) - 卷积核的尺寸 stride(int or tuple, optional) - 卷积步长 padding (int or tuple, optional)- 输入的每一条边补充0的层数 dilation(int or tu

  • PyTorch的自适应池化Adaptive Pooling实例

    简介 自适应池化Adaptive Pooling是PyTorch含有的一种池化层,在PyTorch的中有六种形式: 自适应最大池化Adaptive Max Pooling: torch.nn.AdaptiveMaxPool1d(output_size) torch.nn.AdaptiveMaxPool2d(output_size) torch.nn.AdaptiveMaxPool3d(output_size) 自适应平均池化Adaptive Average Pooling: torch.nn.A

  • Pytorch实现基于CharRNN的文本分类与生成示例

    1 简介 本篇主要介绍使用pytorch实现基于CharRNN来进行文本分类与内容生成所需要的相关知识,并最终给出完整的实现代码. 2 相关API的说明 pytorch框架中每种网络模型都有构造函数,在构造函数中定义模型的静态参数,这些参数将对模型所包含weights参数的维度进行设置.在运行时,模型的实例将接收动态的tensor数据并调用forword,在得到模型输出之后便可以和真实的标签数据进行误差计算,并通过优化器进行反向传播以调整模型的参数.下面重点介绍NLP常用到的模型和相关方法. 2

  • PyTorch中的padding(边缘填充)操作方式

    简介 我们知道,在对图像执行卷积操作时,如果不对图像边缘进行填充,卷积核将无法到达图像边缘的像素,而且卷积前后图像的尺寸也会发生变化,这会造成许多麻烦. 因此现在各大深度学习框架的卷积层实现上基本都配备了padding操作,以保证图像输入输出前后的尺寸大小不变.例如,若卷积核大小为3x3,那么就应该设定padding=1,即填充1层边缘像素:若卷积核大小为7x7,那么就应该设定padding=3,填充3层边缘像素:也就是padding大小一般设定为核大小的一半.在pytorch的卷积层定义中,默

  • 使用 PyTorch 实现 MLP 并在 MNIST 数据集上验证方式

    简介 这是深度学习课程的第一个实验,主要目的就是熟悉 Pytorch 框架.MLP 是多层感知器,我这次实现的是四层感知器,代码和思路参考了网上的很多文章.个人认为,感知器的代码大同小异,尤其是用 Pytorch 实现,除了层数和参数外,代码都很相似. Pytorch 写神经网络的主要步骤主要有以下几步: 1 构建网络结构 2 加载数据集 3 训练神经网络(包括优化器的选择和 Loss 的计算) 4 测试神经网络 下面将从这四个方面介绍 Pytorch 搭建 MLP 的过程. 项目代码地址:la

随机推荐