Python探索之自定义实现线程池

为什么需要线程池呢?

设想一下,如果我们使用有任务就开启一个子线程处理,处理完成后,销毁子线程或等得子线程自然死亡,那么如果我们的任务所需时间比较短,但是任务数量比较多,那么更多的时间是花在线程的创建和结束上面,效率肯定就低了。

    线程池的原理:

既然是线程池(Thread pool),其实名字很形象,就是把指定数量的可用子线程放进一个"池里",有任务时取出一个线程执行,任务执行完后,并不立即销毁线程,而是放进线程池中,等待接收下一个任务。这样内存和cpu的开销也比较小,并且我们可以控制线程的数量。

    线程池的实现:

线程池有很多种实现方式,在python中,已经给我们提供了一个很好的实现方式:Queue-队列。因为python中Queue本身就是同步的,所以也就是线程安全的,所以我们可以放心的让多个线程共享一个Queue。

那么说到线程池,那么理应也得有一个任务池,任务池中存放着待执行的任务,各个线程到任务池中取任务执行,那么用Queue来实现任务池是最好不过的。

1.low版线程池

设计思路:运用队列queue

将线程类名放入队列中,执行一个就拿一个出来

import queue
import threading
class ThreadPool(object):
  def __init__(self, max_num=20):
    self.queue = queue.Queue(max_num) #创建队列,最大数为20
    for i in range(max_num):
      self.queue.put(threading.Thread) #将类名放入队列中
  def get_thread(self):
    return self.queue.get() #从队列中取出类名
  def add_thread(self):
    self.queue.put(threading.Thread) #进类名放入队列中
def func(arg, p): #定义一个函数
  print(arg)
  import time
  time.sleep(2)
  p.add_thread()
pool = ThreadPool(10) #创建对象,并执行该类的构造方法,即将线程的类名放入队列中
for i in range(30):
  thread = pool.get_thread() #调用该对象的get_thread方法,取出类名
  t = thread(target=func, args=(i, pool)) #创建对象,执行func,参数在args中
  t.start()

由于此方法要求使用者修改原函数,并在原函数里传参数,且调用方法也发生了改变,并且有空闲线程浪费资源,实际操作中并不方便,故设计了下一版线程池。

2.绝版线程池

设计思路:运用队列queue

a.队列里面放任务
b.线程一次次去取任务,线程一空闲就去取任务

import queue
import threading
import contextlib
import time
StopEvent = object()
class ThreadPool(object):
  def __init__(self, max_num, max_task_num = None):
    if max_task_num:
      self.q = queue.Queue(max_task_num)
    else:
      self.q = queue.Queue()
    self.max_num = max_num
    self.cancel = False
    self.terminal = False
    self.generate_list = []
    self.free_list = []
  def run(self, func, args, callback=None):
    """
    线程池执行一个任务
    :param func: 任务函数
    :param args: 任务函数所需参数
    :param callback: 任务执行失败或成功后执行的回调函数,回调函数有两个参数1、任务函数执行状态;2、任务函数返回值(默认为None,即:不执行回调函数)
    :return: 如果线程池已经终止,则返回True否则None
    """
    if self.cancel:
      return
    if len(self.free_list) == 0 and len(self.generate_list) < self.max_num:
      self.generate_thread()
    w = (func, args, callback,)
    self.q.put(w)
  def generate_thread(self):
    """
    创建一个线程
    """
    t = threading.Thread(target=self.call)
    t.start()
  def call(self):
    """
    循环去获取任务函数并执行任务函数
    """
    current_thread = threading.currentThread()
    self.generate_list.append(current_thread)
    event = self.q.get()
    while event != StopEvent:
      func, args, callback = event
      try:
        result = func(*args)
        success = True
      except Exception as e:
        success = False
        result = None
      if callback is not None:
        try:
          callback(success, result)
        except Exception as e:
          pass
      with self.worker_state(self.free_list, current_thread):
        if self.terminal:
          event = StopEvent
        else:
          event = self.q.get()
    else:
      self.generate_list.remove(current_thread)
  def close(self):
    """
    执行完所有的任务后,所有线程停止
    """
    self.cancel = True
    count = len(self.generate_list)
    while count:
      self.q.put(StopEvent)
      count -= 1
  def terminate(self):
    """
    无论是否还有任务,终止线程
    """
    self.terminal = True
    while self.generate_list:
      self.q.put(StopEvent)
    self.q.queue.clear()
  @contextlib.contextmanager
  def worker_state(self, state_list, worker_thread):
    """
    用于记录线程中正在等待的线程数
    """
    state_list.append(worker_thread)
    try:
      yield
    finally:
      state_list.remove(worker_thread)
# How to use
pool = ThreadPool(5)
def callback(status, result):
  # status, execute action status
  # result, execute action return value
  pass
def action(i):
  print(i)
for i in range(30):
  ret = pool.run(action, (i,), callback)
time.sleep(3)
print(len(pool.generate_list), len(pool.free_list))
print(len(pool.generate_list), len(pool.free_list))
pool.close()
# pool.terminate()

总结

以上就是本文关于Python探索之自定义实现线程池的全部内容,希望对大家有所帮助。感兴趣的朋友可以继续参阅本站:python中模块的__all__属性详解、Python面向对象编程基础解析(二)等,如有不足之处,欢迎留言指出。感谢朋友们对本站的支持!

(0)

相关推荐

  • 用Python实现一个简单的线程池

    线程池的概念是什么? 在面向对象编程中,创建和销毁对象是很费时间的,因为创建一个对象要获取内存资源或者其它更多资源.在Java中更是 如此,虚拟机将试图跟踪每一个对象,以便能够在对象销毁后进行垃圾回收.所以提高服务程序效率的一个手段就是尽可能减少创建和销毁对象的次数,特别是一些 很耗资源的对象创建和销毁.如何利用已有对象来服务就是一个需要解决的关键问题,其实这就是一些"池化资源"技术产生的原因. 我理解为线程池是一个存放很多线程的单位,同时还有一个对应的任务队列.整个执行过程其实就是使

  • python实现线程池的方法

    本文实例讲述了python实现线程池的方法.分享给大家供大家参考.具体如下: 原理:建立一个任务队列,然多个线程都从这个任务队列中取出任务然后执行,当然任务队列要加锁,详细请看代码 文件名:thrd_pool.py 系统环境:ubuntu linux & python2.6 import threading import time import signal import os class task_info(object): def __init__(self): self.func = No

  • php与python实现的线程池多线程爬虫功能示例

    本文实例讲述了php与python实现的线程池多线程爬虫功能.分享给大家供大家参考,具体如下: 多线程爬虫可以用于抓取内容了这个可以提升性能了,这里我们来看php与python 线程池多线程爬虫的例子,代码如下: php例子 <?php class Connect extends Worker //worker模式 { public function __construct() { } public function getConnection() { if (!self::$ch) { sel

  • Python实现线程池代码分享

    原理:建立一个任务队列,然多个线程都从这个任务队列中取出任务然后执行,当然任务队列要加锁,详细请看代码 import threading import time import signal import os class task_info(object): def __init__(self): self.func = None self.parm0 = None self.parm1 = None self.parm2 = None class task_list(object): def

  • python线程池的实现实例

    直接上代码: 复制代码 代码如下: # -*- coding: utf-8 -*- import Queue import threadingimport urllibimport urllib2import os def down(url,n):    print 'item '+str(n)+' start '    filename=urllib2.unquote(url).decode('utf8').split('/')[-1]    urllib.urlretrieve(url, f

  • Python探索之自定义实现线程池

    为什么需要线程池呢? 设想一下,如果我们使用有任务就开启一个子线程处理,处理完成后,销毁子线程或等得子线程自然死亡,那么如果我们的任务所需时间比较短,但是任务数量比较多,那么更多的时间是花在线程的创建和结束上面,效率肯定就低了.     线程池的原理: 既然是线程池(Thread pool),其实名字很形象,就是把指定数量的可用子线程放进一个"池里",有任务时取出一个线程执行,任务执行完后,并不立即销毁线程,而是放进线程池中,等待接收下一个任务.这样内存和cpu的开销也比较小,并且我们

  • spring boot使用自定义的线程池执行Async任务

    在前面的博客中,//www.jb51.net/article/134866.htm 我们使用了spring boot的异步操作,当时,我们使用的是默认的线程池,但是,如果我们想根据项目来定制自己的线程池了,下面就来说说,如何定制线程池! 一.增加配置属性类 package com.chhliu.springboot.async.configuration; import org.springframework.boot.context.properties.ConfigurationProper

  • Python 使用threading+Queue实现线程池示例

    一.线程池 1.为什么需要使用线程池 1.1 创建/销毁线程伴随着系统开销,过于频繁的创建/销毁线程,会很大程度上影响处理效率. 记创建线程消耗时间T1,执行任务消耗时间T2,销毁线程消耗时间T3,如果T1+T3>T2,那说明开启一个线程来执行这个任务太不划算了!在线程池缓存线程可用已有的闲置线程来执行新任务,避免了创建/销毁带来的系统开销. 1.2 线程并发数量过多,抢占系统资源从而导致阻塞. 线程能共享系统资源,如果同时执行的线程过多,就有可能导致系统资源不足而产生阻塞的情况. 1.3 对线

  • Python异步爬虫多线程与线程池示例详解

    目录 背景 异步爬虫方式 多线程,多进程(不建议) 线程池,进程池(适当使用) 单线程+异步协程(推荐) 多线程 线程池 背景 当对多个url发送请求时,只有请求完第一个url才会接着请求第二个url(requests是一个阻塞的操作),存在等待的时间,这样效率是很低的.那我们能不能在发送请求等待的时候,为其单独开启进程或者线程,继续请求下一个url,执行并行请求 异步爬虫方式 多线程,多进程(不建议) 好处:可以为相关阻塞的操作单独开启线程或者进程,阻塞操作就可以异步会执行 弊端:不能无限制开

  • Python探索之爬取电商售卖信息代码示例

    网络爬虫(又被称为网页蜘蛛,网络机器人,在FOAF社区中间,更经常的称为网页追逐者),是一种按照一定的规则,自动的抓取万维网信息的程序或者脚本. 下面有一个示例代码,分享给大家: #! /usr/bin/env python # encoding = 'utf-8'# Filename: spider_58center_sth.py from bs4 import BeautifulSoup import time import requests url_58 = 'http://nj.58.c

  • Python实现的自定义多线程多进程类示例

    本文实例讲述了Python实现的自定义多线程多进程类.分享给大家供大家参考,具体如下: 最近经常使用到对大量文件进行操作的程序以前每次写的时候都要在函数中再写一个多线程多进程的函数,做了些重复的工作遇到新的任务时还要重写,因此将多线程与多进程的一些简单功能写成一个类,方便使用.功能简单只为以后方便使用. 使用中发现bug会再进行更新 #!/usr/bin/env python # -*- coding: utf-8 -*- # @Time : 2017/5/10 12:47 # @Author

  • python线程池threadpool实现篇

    本文为大家分享了threadpool线程池中所有的操作,供大家参考,具体内容如下 首先介绍一下自己使用到的名词: 工作线程(worker):创建线程池时,按照指定的线程数量,创建工作线程,等待从任务队列中get任务: 任务(requests):即工作线程处理的任务,任务可能成千上万个,但是工作线程只有少数.任务通过          makeRequests来创建 任务队列(request_queue):存放任务的队列,使用了queue实现的.工作线程从任务队列中get任务进行处理: 任务处理函

  • Spring Boot利用@Async如何实现异步调用:自定义线程池

    前言 在之前的Spring Boot基础教程系列中,已经通过<Spring Boot中使用@Async实现异步调用>一文介绍过如何使用@Async注解来实现异步调用了.但是,对于这些异步执行的控制是我们保障自身应用健康的基本技能.本文我们就来学习一下,如果通过自定义线程池的方式来控制异步调用的并发. 本文中的例子我们可以在之前的例子基础上修改,也可以创建一个全新的Spring Boot项目来尝试. 定义线程池 第一步,先在Spring Boot主类中定义一个线程池,比如: @SpringBoo

  • Java8并行流中自定义线程池操作示例

    本文实例讲述了Java8并行流中自定义线程池操作.分享给大家供大家参考,具体如下: 1.概览 java8引入了流的概念,流是作为一种对数据执行大量操作的有效方式.并行流可以被包含于支持并发的环境中.这些流可以提高执行性能-以牺牲多线程的开销为代价 在这篇短文中,我们将看一下 Stream API的最大限制,同时看一下如何让并行流和线程池实例(ThreadPool instance)一起工作. 2.并行流Parallel Stream 我们先以一个简单的例子来开始-在任一个Collection类型

随机推荐