python实现二分查找算法
二分查找算法:简单的说,就是将一个数组先排序好,比如按照从小到大的顺序排列好,当给定一个数据,比如target,查找target在数组中的位置时,可以先找到数组中间的数array[middle]和target进行比较,当它比target小时,那么target一定是在数组的右边,反之,则target在数组的左边,比如它比target小,则下次就可以只比较[middle+1, end]的数,继续使用二分法,将它一分为二,直到找到target这个数返回或者数组全部遍历完成(target不在数组中)
优点:效率高,时间复杂度为O(logN);
缺点:数据要是有序的,顺序存储。
python的代码实现如下:
#!/usr/bin/python env # -*- coding:utf-8 -*- def half_search(array,target): low = 0 high = len(array) - 1 while low < high: mid = (low + high)/2 if array[mid] > target: high = mid - 1 elif array[mid] < target: low = mid + 1 elif array[mid] == target: print 'I find it! It is in the position of:',mid return mid else: print "please contact the coder!" return -1 if __name__ == "__main__": array = [1, 2, 2, 4, 4, 5]
运行结果如下:
I find it! It is in the position of: 4 4 -1 I find it! It is in the position of: 0 0 -1
以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持我们。
相关推荐
-
简介二分查找算法与相关的Python实现示例
二分查找Binary Search的思想: 以有序表表示静态查找表时,查找函数可以用二分查找来实现. 二分查找(Binary Search)的查找过程是:先确定待查记录所在的区间,然后逐步缩小区间直到找到或找不到该记录为止. 1二分查找的时间复杂度是O(log(n)),最坏情况下的时间复杂度是O(n). 假设 low 指向区间下界,high 指向区间上界,mid 指向区间的中间位置,则 mid = (low + high) / 2; 具体过程: 1.先将关键字与 mid 指向的元素比较,如果相
-
Python二分查找详解
先来看个实例 #!/usr/bin/env python import sys def search2(a,m): low = 0 high = len(a) - 1 while(low <= high): mid = (low + high)/2 midval = a[mid] if midval < m: low = mid + 1 elif midval > m: high = mid - 1 else: print mid return mid print -1 return -
-
Python实现二分查找算法实例
本文实例讲述了Python实现二分查找算法的方法.分享给大家供大家参考.具体实现方法如下: #!/usr/bin/env python import sys def search2(a,m): low = 0 high = len(a) - 1 while(low <= high): mid = (low + high)/2 midval = a[mid] if midval < m: low = mid + 1 elif midval > m: high = mid - 1 else:
-
python二分查找算法的递归实现方法
本文实例讲述了python二分查找算法的递归实现方法.分享给大家供大家参考,具体如下: 这里先提供一段二分查找的代码: def binarySearch(alist, item): first = 0 last = len(alist)-1 found = False while first<=last and not found: midpoint = (first + last)//2 if alist[midpoint] == item: found = True else: if ite
-
Python基于二分查找实现求整数平方根的方法
本文实例讲述了Python基于二分查找实现求整数平方根的方法.分享给大家供大家参考,具体如下: x=int(raw_input('please input a int:')) if x<0: retrun -1 low=0 high=x ans=(low+high)/2.0 sign=ans while ans**2 !=x: if ans**2>x: high=ans else: low=ans ans=(low+high)/2.0 if sign==ans: break print ans
-
Python实现二分查找与bisect模块详解
前言 其实Python 的列表(list)内部实现是一个数组,也就是一个线性表.在列表中查找元素可以使用 list.index() 方法,其时间复杂度为O(n) .对于大数据量,则可以用二分查找进行优化. 二分查找要求对象必须有序,其基本原理如下: 1.从数组的中间元素开始,如果中间元素正好是要查找的元素,则搜素过程结束: 2.如果某一特定元素大于或者小于中间元素,则在数组大于或小于中间元素的那一半中查找,而且跟开始一样从中间元素开始比较. 3.如果在某一步骤数组为空,则代表找不到. 二分查找也
-
python实现二分查找算法
二分查找算法:简单的说,就是将一个数组先排序好,比如按照从小到大的顺序排列好,当给定一个数据,比如target,查找target在数组中的位置时,可以先找到数组中间的数array[middle]和target进行比较,当它比target小时,那么target一定是在数组的右边,反之,则target在数组的左边,比如它比target小,则下次就可以只比较[middle+1, end]的数,继续使用二分法,将它一分为二,直到找到target这个数返回或者数组全部遍历完成(target不在数组中) 优
-
Python递归函数 二分查找算法实现解析
一.初始递归 递归函数:在一个函数里在调用这个函数本身. 递归的最大深度:998 正如你们刚刚看到的,递归函数如果不受到外力的阻止会一直执行下去.但是我们之前已经说过关于函数调用的问题,每一次函数调用都会产生一个属于它自己的名称空间,如果一直调用下去,就会造成名称空间占用太多内存的问题,于是python为了杜绝此类现象,强制的将递归层数控制在了997(只要997!你买不了吃亏,买不了上当...). 拿什么来证明这个"998理论"呢?这里我们可以做一个实验: def foo(n): pr
-
Python如何实现的二分查找算法
先来看个用Python实现的二分查找算法实例 import sys def search2(a,m): low = 0 high = len(a) - 1 while(low <= high): mid = (low + high)/2 midval = a[mid] if midval < m: low = mid + 1 elif midval > m: high = mid - 1 else: print mid return mid print -1 return -1 if _
-
Python实现七大查找算法的示例代码
查找算法 -- 简介 查找(Searching)就是根据给定的某个值,在查找表中确定一个其关键字等于给定值的数据元素. 查找表(Search Table):由同一类型的数据元素构成的集合 关键字(Key):数据元素中某个数据项的值,又称为键值 主键(Primary Key):可唯一的标识某个数据元素或记录的关键字 查找表按照操作方式可分为: 1.静态查找表(Static Search Table):只做查找操作的查找表.它的主要操作是: ①
-
c++与python实现二分查找的原理及实现
目录 1.时间复杂度与优缺点 2.python实现 3.C++实现 在计算机中,数据的查找方式与其存储方式关系密切.试想一下,如果图书馆中书籍杂乱无章的存放,那么要想找到心仪的书籍将会非常困难.为此,人们常常将物品按照某种规则或次序进行放置,目的是便于日后的查找. 作为查找算法家族中的一员,二分查找正是利用数据按次序存储这一优点,极大的提升了查找目标值所在位置的速度. 二分查找的核心思想是:首先将数组中间值和目标值进行比较,如果相等则返回:如果不相等,则选择中间值左边的一半或者右边的一半进行比较
-
使用PHP实现二分查找算法代码分享
第一种方法: [二分查找要求]:1.必须采用顺序存储结构 2.必须按关键字大小有序排列. [优缺点]折半查找法的优点是比较次数少,查找速度快,平均性能好;其缺点是要求待查表为有序表,且插入删除困难.因此,折半查找方法适用于不经常变动而查找频繁的有序列表. [算法思想]首先,将表中间位置记录的关键字与查找关键字比较,如果两者相等,则查找成功:否则利用中间位置记录将表分成前.后两个子表,如果中间位置记录的关键字大于查找关键字,则进一步查找前一子表,否则进一步查找后一子表. 复制代码 代码如下: <?
随机推荐
- ajax处理php返回json数据的实例代码
- python numpy函数中的linspace创建等差数列详解
- Linux 中的Logwatch命令
- jQueryUI 拖放排序遇到滚动条时有可能无法执行排序的小bug及解决方案
- Jquery多选框互相内容交换的实例代码
- javascript 设计模式之单体模式 面向对象学习基础
- JS实现最简单的冒泡排序算法
- Java窗体动态加载磁盘文件的实现方法
- 一个简单的Node.js异步操作管理器分享
- 漂亮的widgets,支持换肤和后期开发新皮肤
- php通过文件头检测文件类型通用代码类(zip,rar等)
- Android Retrofit 2.0框架上传图片解决方案
- MySQL修改my.cnf配置不生效的解决方法
- JS截取字符串常用方法整理及使用示例
- 两个DIV等高的JS的实现代码
- 如何计算出当前日期属于定义时间段内的第几星期?
- Ruby中区分运行来源的方法
- mysql 有关“InnoDB Error ib_logfile0 of different size”错误
- Android中的jQuery:AQuery简介
- Jquery 滑入滑出效果实现代码