理解python正则表达式

在python中,对正则表达式的支持是通过re模块来支持的。使用re的步骤是先把表达式字符串编译成pattern实例,然后在使用pattern去匹配文本获取结果。

其实也有另外一种方式,就是直接使用re模块的方法,但是这样就不能使用编译后的pattern实例了。

实例:

#!/usr/bin/python
# -*- coding: utf-8 -*-

import re

pat = re.compile(r'hello')

match = pat.match('hello world!')

if match:
  print match.group()

match1 = re.match(r'hello','hello world!')

if match1:
  print match1.group()

  print match1.pos

返回的结果相同,都是 hello

关于Pattern 对象:

它是由re.complie函数来构造的,是一个编译好的正则表达式,通过Pattern提供的一系列方法可以对文本进行匹配查找。

Pattern不能直接实例化,必须使用re.compile()进行构造。

Pattern提供了几个可读属性用于获取表达式的相关信息:

  • pattern: 编译时用的表达式字符串。
  • flags: 编译时用的匹配模式。数字形式。
  • groups: 表达式中分组的数量。
  • groupindex: 以表达式中有别名的组的别名为键、以该组对应的编号为值的字典,没有别名的组不包含在内。

关于 re.compile方法

re.compile(strPattern[, flag]):

这个方法是Pattern类的工厂方法,用于将字符串形式的正则表达式编译为Pattern对象。 第二个参数flag是匹配模式,取值可以使用按位或运算符'|'表示同时生效,比如re.I | re.M。另外,你也可以在regex字符串中指定模式,比如re.compile('pattern', re.I | re.M)与re.compile('(?im)pattern')是等价的。
可选值有:

  • re.I(re.IGNORECASE): 忽略大小写(括号内是完整写法,下同)
  • M(MULTILINE): 多行模式,改变'^'和'$'的行为(参见上图)
  • S(DOTALL): 点任意匹配模式,改变'.'的行为
  • L(LOCALE): 使预定字符类 \w \W \b \B \s \S 取决于当前区域设定
  • U(UNICODE): 使预定字符类 \w \W \b \B \s \S \d \D 取决于unicode定义的字符属性
  • X(VERBOSE): 详细模式。这个模式下正则表达式可以是多行,忽略空白字符,并可以加入注释

1).关于 match方法:

Match对象是一次匹配的结果,包含了很多关于此次匹配的信息,可以使用Match提供的可读属性或方法来获取这些信息。

属性:

  • string: 匹配时使用的文本。
  • re: 匹配时使用的Pattern对象。
  • pos: 文本中正则表达式开始搜索的索引。值与Pattern.match()和Pattern.seach()方法的同名参数相同。
  • endpos: 文本中正则表达式结束搜索的索引。值与Pattern.match()和Pattern.seach()方法的同名参数相同。
  • lastindex: 最后一个被捕获的分组在文本中的索引。如果没有被捕获的分组,将为None。
  • lastgroup: 最后一个被捕获的分组的别名。如果这个分组没有别名或者没有被捕获的分组,将为None。

方法:

1、group([group1, …]):
获得一个或多个分组截获的字符串;指定多个参数时将以元组形式返回。group1可以使用编号也可以使用别名;编号0代表整个匹配的子串;不填写参数时,返回group(0);没有截获字符串的组返回None;截获了多次的组返回最后一次截获的子串。
2、groups([default]):
以元组形式返回全部分组截获的字符串。相当于调用group(1,2,…last)。default表示没有截获字符串的组以这个值替代,默认为None。
3、groupdict([default]):
返回以有别名的组的别名为键、以该组截获的子串为值的字典,没有别名的组不包含在内。default含义同上。
4、start([group]):
返回指定的组截获的子串在string中的起始索引(子串第一个字符的索引)。group默认值为0。
5、end([group]):
返回指定的组截获的子串在string中的结束索引(子串最后一个字符的索引+1)。group默认值为0。
6、span([group]):
返回(start(group), end(group))。
7、expand(template):
将匹配到的分组代入template中然后返回。template中可以使用\id或\g<id>、\g<name>引用分组,但不能使用编号0。\id与\g<id>是等价的;但\10将被认为是第10个分组,如果你想表达\1之后是字符'0',只能使用\g<1>0。
请看例子:

#!/usr/bin/python
# -*- coding: utf-8 -*-

import re

m = re.match(r'(\w+)\s(\w+)','aaa bbb ccc')

print m.string

print m.re

print m.pos

print m.endpos

print m.lastindex

print m.lastgroup

print m.group()

print m.start()

print m.end()

print m.span()

print m.expand(r'\2 \1')

结果为:

aaa bbb ccc
<_sre.SRE_Pattern object at 0x10dbfda08>
0
11
2
None
aaa bbb
0
7
(0, 7)
bbb aaa

2).关于search方法:

  查找可以匹配的子串,和match 不同的是他不是从开始处开始匹配的。如果没有匹配上,则返回None

上面的例子中,将match 换成search返回的结果一样

请看:

#!/usr/bin/python
# -*- coding: utf-8 -*-

import re

pat = re.compile(r'hello')

match = pat.match('shello world!')

if match:
  print match.group()
else:
  print 'not match!'

match1 = re.search(r'hello','shello world!')

if match1:
  print match1.group()

结果为:

not match!
hello

这2个函数,没有其他区别,就是一个是从开始匹配的,另外一个不是开始的

3.split(string[, maxsplit]) | re.split(pattern, string[, maxsplit]):
按照能够匹配的子串将string分割后返回列表。maxsplit用于指定最大分割次数,不指定将全部分割。

4.findall(string[, pos[, endpos]]) | re.findall(pattern, string[, flags]):
搜索string,以列表形式返回全部能匹配的子串。

5.finditer(string[, pos[, endpos]]) | re.finditer(pattern, string[, flags]):
搜索string,返回一个顺序访问每一个匹配结果(Match对象)的迭代器。

6.sub(repl, string[, count]) | re.sub(pattern, repl, string[, count]):
使用repl替换string中每一个匹配的子串后返回替换后的字符串。
当repl是一个字符串时,可以使用\id或\g<id>、\g<name>引用分组,但不能使用编号0。
当repl是一个方法时,这个方法应当只接受一个参数(Match对象),并返回一个字符串用于替换(返回的字符串中不能再引用分组)。
count用于指定最多替换次数,不指定时全部替换。

7.subn(repl, string[, count]) |re.sub(pattern, repl, string[, count]):
返回 (sub(repl, string[, count]), 替换次数)。

例子为:

#!/usr/bin/python
# -*- coding: utf-8 -*-

import re

p =re.compile(r'\d+')

print p.split('aa1bb2cc3dd4ee5ff6')

print p.findall('aa1bb2cc3dd4ee5ff6')

for m in p.finditer('aa1bb2cc3dd4ee5ff6'):
  print m.group(),

print '\nsub test'
p1 =re.compile(r'(\w+)\s+(\w+)')

s = 'i am ok'

print p1.sub(r'\2 \1',s)
print p1.subn(r'\2 \1',s)

结果:

['aa', 'bb', 'cc', 'dd', 'ee', 'ff', '']
['1', '2', '3', '4', '5', '6']
1 2 3 4 5 6
sub test
am i ok
('am i ok', 1)

以上就是本文的全部内容,希望对大家的学习有所帮助。

(0)

相关推荐

  • python正则表达式之作业计算器

    作业:计算器开发 实现加减乘除及拓号优先级解析 用户输入 1 - 2 * ( (60-30 +(-40/5) * (9-2*5/3 + 7 /3*99/4*2998 +10 * 568/14 )) - (-4*3)/ (16-3*2) )等类似公式后,必须自己解析里面的(),+,-,*,/符号和公式,运算后得出结果,结果必须与真实的计算器所得出的结果一致 一.说明: 有一点bug就是不能计算幂次方,如:'6**6'会报错 该计算器思路: 1.没用使用递归,先找出并计算所有括号里的公式,再计算乘除

  • Python匹配中文的正则表达式

    正则表达式并不是Python的一部分.正则表达式是用于处理字符串的强大工具,拥有自己独特的语法以及一个独立的处理引擎,效率上可能不如str自带的方法,但功能十分强大.得益于这一点,在提供了正则表达式的语言里,正则表达式的语法都是一样的,区别只在于不同的编程语言实现支持的语法数量不同:但不用担心,不被支持的语法通常是不常用的部分. Python正则表达式简介 正则表达式是一个特殊的字符序列,它能帮助你方便的检查一个字符串是否与某种模式匹配. Python 自1.5版本起增加了re 模块,它提供 P

  • python 正则表达式学习小结

    在Python中实现正则的方式是通过re(regular expression的缩写)模块来实现的,你可以调用re模块的各种方法来实现不同的功能,下面我们就来说下,在Python中通过re模块可以调用那些方法,以及这些方法的作用都是什么:还有就是正则的实例以及各种特殊符号的含义: 1.re.sub和replace: sub的全拼是substitute,也就是替换的意思:既然知道是替换了,那就很容易用到实例中了,其实replace也是替换的意思,只不过它们的用法不太相同,下面用一个例子来详细说明下

  • Python正则表达式之基础篇

    正则表达式是用于处理字符串的强大工具,它并不是Python的一部分. 其他编程语言中也有正则表达式的概念,区别只在于不同的编程语言实现支持的语法数量不同. 它拥有自己独特的语法以及一个独立的处理引擎,在提供了正则表达式的语言里,正则表达式的语法都是一样的. 下图展示了使用正则表达式进行匹配的流程: 1.1介绍 正则表达式并不是Python的一部分.正则表达式是用于处理字符串的强大工具,拥有自己独特的语法以及一个独立的处理引擎,效率上可能不如str自带的方法,但功能十分强大.得益于这一点,在提供了

  • Python 正则表达式入门(初级篇)

    引子 首先说 正则表达式是什么? 正则表达式,又称正规表示式.正规表示法.正规表达式.规则表达式.常规表示法(英语:Regular Expression,在代码中常简写为regex.regexp或RE),计算机科学的一个概念.正则表达式使用单个字符串来描述.匹配一系列匹配某个句法规则的字符串.在很多文本编辑器里,正则表达式通常被用来检索.替换那些匹配某个模式的文本. 许多程序设计语言都支持利用正则表达式进行字符串操作.例如,在Perl中就内建了一个功能强大的正则表达式引擎.正则表达式这个概念最初

  • Python基础教程之正则表达式基本语法以及re模块

    什么是正则: 正则表达式是可以匹配文本片段的模式. 正则表达式'Python'可以匹配'python' 正则是个很牛逼的东西,python中当然也不会缺少. 所以今天的Python就跟大家一起讨论一下python中的re模块. re模块包含对正则表达式的支持. 通配符 .表示匹配任何字符: '.ython'可以匹配'python'和'fython' 对特殊字符进行转义: 'python\.org'匹配'python.org' 字符集 '[pj]ython'能够匹配'python'和'jython

  • Python for Informatics 第11章 正则表达式(一)

    正则表达式,又称正规表示法.常规表示法(英语:Regular Expression,在代码中常简写为regex.regexp或RE),计算机科学的一个概念.正则表达式使用单个字符串来描述.匹配一系列符合某个句法规则的字符串.在很多文本编辑器里,正则表达式通常被用来检索.替换那些符合某个模式的文本. 注:以下文章原文来自于Dr Charles Severance 的 <Python for Informatics> 目前为止,我们一直在通读文件,查找模式和抽取字里行间我们感兴趣的各种信息.我们一

  • 玩转python爬虫之正则表达式

    面对大量杂乱的代码夹杂文字我们怎样把它提取出来整理呢?下面就开始介绍一个十分强大的工具,正则表达式! 1.了解正则表达式 正则表达式是对字符串操作的一种逻辑公式,就是用事先定义好的一些特定字符.及这些特定字符的组合,组成一个"规则字符串",这个"规则字符串"用来表达对字符串的一种过滤逻辑. 正则表达式是用来匹配字符串非常强大的工具,在其他编程语言中同样有正则表达式的概念,Python同样不例外,利用了正则表达式,我们想要从返回的页面内容提取出我们想要的内容就易如反掌

  • Python的爬虫包Beautiful Soup中用正则表达式来搜索

    Beautiful Soup使用时,一般可以通过指定对应的name和attrs去搜索,特定的名字和属性,以找到所需要的部分的html代码. 但是,有时候,会遇到,对于要处理的内容中,其name或attr的值,有多种可能,尤其是符合某一规律,此时,就无法写成固定的值了. 所以,就可以借助正则表达式来解决此问题. 比如, <div class="icon_col"> <h1 class="h1user">crifan</h1> <

  • Python 爬虫学习笔记之正则表达式

    正则表达式的使用 想要学习 Python 爬虫 , 首先需要了解一下正则表达式的使用,下面我们就来看看如何使用. . 的使用这个时候的点就相当于一个占位符,可以匹配任意一个字符,什么意思呢?看个例子就知道 import re content = "helloworld" b = re.findall('w.',content) print b` 注意了,我们首先导入了 re,这个时候大家猜一下输出结果是什么?因为 . 相当于一个占位符,所以理所当然的这个时候的输出结果是 wo . *

  • Python正则表达式使用经典实例

    下面列出Python正则表达式的几种匹配用法,具体内容如下所示: 此外,关于正则的一切http://deerchao.net/tutorials/regex/regex.htm 1.测试正则表达式是否匹配字符串的全部或部分 regex=ur"" #正则表达式 if re.search(regex, subject): do_something() else: do_anotherthing() 2.测试正则表达式是否匹配整个字符串 regex=ur"\Z" #正则表

随机推荐