理论讲解python多进程并发编程

一、什么是进程

进程:正在进行的一个过程或者说一个任务。而负责执行任务则是cpu。

二、进程与程序的区别

程序:仅仅是一堆代

进程:是指打开程序运行的过程

三、并发与并行

并发与并行是指cpu运行多个程序的方式

不管是并行与并发,在用户看起来都是‘同时'运行的,他们都只是一个任务而已,正在干活的是cpu,而一个cpu只能执行一个任务。

并行就相当于有好多台设备,可以同时供好多人使用。

而并发就相当于只有一台设备,供几个人轮流用,每个人用一会就换另一个人。

所以只有多个cpu才能实现并行,而一个cpu只能实现实现并发。

如上图所示:

串行:执行完A,再执行B,再执行C

并行:同时执行ABC

并发:交替执行ABC

四、同步\异步

并发与并行是指cpu运行多个程序的方式,而同步和异步是指一个程序的执行过程

同步:所谓同步,就是在发出一个功能调用时,在没有得到结果之前,该调用就不会返回。

按照这个定义,其实大部分函数都是同步调用,但是一般而言,我们说同步和异步的时候,

特指哪些需要其他部件协作或者需要一定时间完成的任务

异步:异步的概念和同步相对,当一个异步功能调用发出后,调用者不能立即得到结果

当该异步功能完成后,通过状态。通知或回调来通知调用者。如果异步功能用状态来通知,那么

调用者就需要每隔一定时间检查一次,效率就回很低,如果使用通知的方式,效率就回很高,

因为异步功能几乎不需要做额外的操作,至于回调函数,其实和通知没太大区别。

五、阻塞\非阻塞

阻塞:阻塞调用是指调用结果返回之前,当前线程会被挂起(如遇到IO操作)。

函数只有得到结果之后才会被阻塞的线程激活。

非阻塞:非阻塞和阻塞的概念相对,指在不能立即得到结果之前也会立即返回,同时该函数不会阻塞当前线程

小结:同步与异步针对的是函数\任务的调用方式:同步就是当一个进程发起一个函数调用的时候,一直等到函数\任务完成,

而进程继续处于激活状态。而异步情况下是当一个进程发起一个函数|任务调用的时候,不会等函数返回,而继续往下执行,

函数返回的时候通过状态、通知、时间等方式通知进程任务完成

而阻塞和非阻塞是针对进程或者线程,阻塞是当请求不能满足的时候就挂起,而非阻塞则不会阻塞当前的进程

六、进程的创建与终止(了解)

进程的创建:

但凡是硬件,都需要有操作系统去管理,只要有操作系统,就有进程的概念,就需要有创建进程的方式,一些操作系统只为一个应用程序设计,比如微波炉中的控制器,一旦启动微波炉,所有的进程都已经存在。

而对于通用系统(跑很多应用程序),需要有系统运行过程中创建或撤销进程的能力,主要分为4中形式创建新的进程

1. 系统初始化(查看进程linux中用ps命令,windows中用任务管理器,前台进程负责与用户交互,后台运行的进程与用户无关,运行在后台并且只在需要时才唤醒的进程,称为守护进程,如电子邮件、web页面、新闻、打印)

2. 一个进程在运行过程中开启了子进程(如nginx开启多进程,os.fork,subprocess.Popen等)

3. 用户的交互式请求,而创建一个新进程(如用户双击暴风影音)

4. 一个批处理作业的初始化(只在大型机的批处理系统中应用)

无论哪一种,新进程的创建都是由一个已经存在的进程执行了一个用于创建进程的系统调用而创建的:

1. 在UNIX中该系统调用是:fork,fork会创建一个与父进程一模一样的副本,二者有相同的存储映像、同样的环境字符串和同样的打开文件(在shell解释器进程中,执行一个命令就会创建一个子进程)

2. 在windows中该系统调用是:CreateProcess,CreateProcess既处理进程的创建,也负责把正确的程序装入新进程。

关于创建的子进程,UNIX和windows

1.相同的是:进程创建后,父进程和子进程有各自不同的地址空间(多道技术要求物理层面实现进程之间内存的隔离),任何一个进程的在其地址空间中的修改都不会影响到另外一个进程。

2.不同的是:在UNIX中,子进程的初始地址空间是父进程的一个副本,提示:子进程和父进程是可以有只读的共享内存区的。但是对于windows系统来说,从一开始父进程与子进程的地址空间就是不同的。

进程的终止:

1. 正常退出(自愿,如用户点击交互式页面的叉号,或程序执行完毕调用发起系统调用正常退出,在linux中用exit,在windows中用ExitProcess)

2. 出错退出(自愿,python a.py中a.py不存在)

3. 严重错误(非自愿,执行非法指令,如引用不存在的内存,1/0等,可以捕捉异常,try...except...)

4. 被其他进程杀死(非自愿,如kill -9)

七、进程的层次结构

无论UNIX还是windows,进程只有一个父进程,不同的是:

1. 在UNIX中所有的进程,都是以init进程为根,组成树形结构。父子进程共同组成一个进程组,这样,当从键盘发出一个信号时,该信号被送给当前与键盘相关的进程组中的所有成员。

2. 在windows中,没有进程层次的概念,所有的进程都是地位相同的,唯一类似于进程层次的暗示,是在创建进程时,父进程得到一个特别的令牌(称为句柄),该句柄可以用来控制子进程,但是父进程有权把该句柄传给其他子进程,这样就没有层次了。

八、进程的状态

其实在两种情况下会导致一个进程在逻辑上不能运行,

1. 进程挂起是自身原因,遇到I/O阻塞,便要让出CPU让其他进程去执行,这样保证CPU一直在工作

2. 与进程无关,是操作系统层面,可能会因为一个进程占用时间过多,或者优先级等原因,而调用其他的进程去使用CPU。

因而一个进程由三种状态

您可能感兴趣的文章:

  • Python多进程并发与多线程并发编程实例总结
  • python并发编程之多进程、多线程、异步和协程详解
(0)

相关推荐

  • Python多进程并发与多线程并发编程实例总结

    本文实例总结了Python多进程并发与多线程并发.分享给大家供大家参考,具体如下: 这里对python支持的几种并发方式进行简单的总结. Python支持的并发分为多线程并发与多进程并发(异步IO本文不涉及).概念上来说,多进程并发即运行多个独立的程序,优势在于并发处理的任务都由操作系统管理,不足之处在于程序与各进程之间的通信和数据共享不方便:多线程并发则由程序员管理并发处理的任务,这种并发方式可以方便地在线程间共享数据(前提是不能互斥).Python对多线程和多进程的支持都比一般编程语言更高级

  • python并发编程之多进程、多线程、异步和协程详解

    最近学习python并发,于是对多进程.多线程.异步和协程做了个总结. 一.多线程 多线程就是允许一个进程内存在多个控制权,以便让多个函数同时处于激活状态,从而让多个函数的操作同时运行.即使是单CPU的计算机,也可以通过不停地在不同线程的指令间切换,从而造成多线程同时运行的效果. 多线程相当于一个并发(concunrrency)系统.并发系统一般同时执行多个任务.如果多个任务可以共享资源,特别是同时写入某个变量的时候,就需要解决同步的问题,比如多线程火车售票系统:两个指令,一个指令检查票是否卖完

  • 理论讲解python多进程并发编程

    一.什么是进程 进程:正在进行的一个过程或者说一个任务.而负责执行任务则是cpu. 二.进程与程序的区别 程序:仅仅是一堆代 进程:是指打开程序运行的过程 三.并发与并行 并发与并行是指cpu运行多个程序的方式 不管是并行与并发,在用户看起来都是'同时'运行的,他们都只是一个任务而已,正在干活的是cpu,而一个cpu只能执行一个任务. 并行就相当于有好多台设备,可以同时供好多人使用. 而并发就相当于只有一台设备,供几个人轮流用,每个人用一会就换另一个人. 所以只有多个cpu才能实现并行,而一个c

  • Python多进程并发与同步机制超详细讲解

    目录 多进程 僵尸进程 Process类 函数方式 继承方式 同步机制 状态管理Managers 在<多线程与同步>中介绍了多线程及存在的问题,而通过使用多进程而非线程可有效地绕过全局解释器锁. 因此,通过multiprocessing模块可充分地利用多核CPU的资源. 多进程 多进程是通过multiprocessing包来实现的,multiprocessing.Process对象(和多线程的threading.Thread类似)用来创建一个进程对象: 在类UNIX平台上,需要对每个Proce

  • Python多进程并发(multiprocessing)用法实例详解

    本文实例讲述了Python多进程并发(multiprocessing)用法.分享给大家供大家参考.具体分析如下: 由于Python设计的限制(我说的是咱们常用的CPython).最多只能用满1个CPU核心. Python提供了非常好用的多进程包multiprocessing,你只需要定义一个函数,Python会替你完成其他所有事情.借助这个包,可以轻松完成从单进程到并发执行的转换. 1.新建单一进程 如果我们新建少量进程,可以如下: import multiprocessing import t

  • Python 多进程并发操作中进程池Pool的实例

    在利用Python进行系统管理的时候,特别是同时操作多个文件目录,或者远程控制多台主机,并行操作可以节约大量的时间.当被操作对象数目不大时,可以直接利用multiprocessing中的Process动态成生多个进程,10几个还好,但如果是上百个,上千个目标,手动的去限制进程数量却又太过繁琐,这时候进程池Pool发挥作用的时候就到了. Pool可以提供指定数量的进程,供用户调用,当有新的请求提交到pool中时,如果池还没有满,那么就会创建一个新的进程用来执行该请求:但如果池中的进程数已经达到规定

  • python多进程并发demo实例解析

    这篇文章主要介绍了python多进程并发demo实例解析,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下 前言 下午需要简单处理一份数据,就直接随手写脚本处理了,但发现效率太低,速度太慢,就改成多进程了: 程序涉及计算.文件读写,鉴于计算内容挺多的,就用多进程了(计算密集). 代码 import pandas as pd from pathlib import Path from concurrent.futures import Process

  • php多进程并发编程防止出现僵尸进程的方法分析

    本文实例讲述了php多进程并发编程防止出现僵尸进程的方法.分享给大家供大家参考,具体如下: 对于用PHP进行多进程并发编程,不可避免要遇到僵尸进程的问题. 僵尸进程是指的父进程已经退出,而该进程dead之后没有进程接受,就成为僵尸进程(zombie)进程.任何进程在退出前(使用exit退出) 都会变成僵尸进程(用于保存进程的状态等信息),然后由init进程接管.如果不及时回收僵尸进程,那么它在系统中就会占用一个进程表项,如果这种僵尸进程过多,最后系统就没有可以用的进程表项,于是也无法再运行其它的

  • 深入讲解Python中面向对象编程的相关知识

    Python从第一天开始就是面向对象的语言.正因为如此,创建和使用类和对象是非常地容易.本章将帮助您在使用Python面向对象编程的技术方面所有提高. 如果没有任何以往面向对象(OO)的编程的经验,那么可能要了解一些基本的入门课程就可以了,或者至少某种形式的教程,让你有了解基本概念. 但是,这里会比较少地介绍面向对象编程(OOP): OOP术语概述 类: 用户定义的原型对象,它定义了一套描述类的任何对象的属性.属性是数据成员(类变量和实例变量)和方法,通过点符号访问. 类变量:这是一个类的所有实

  • 举例讲解Python面相对象编程中对象的属性与类的方法

    python 对象的属性 进入正题,来看一个实例来了解python中类,对象中公有属性,私有属性及局部变量,全局变量的区别. root@10.1.6.200:~# cat object.py #!/usr/bin/env python #coding:utf8 class Dave(): var1 = "class atribute,public atrribute var1" #类属性,公有属性var1 __var2 = "class self atribute __var

  • python 多进程并行编程 ProcessPoolExecutor的实现

    使用 ProcessPoolExecutor from concurrent.futures import ProcessPoolExecutor, as_completed import random 斐波那契数列 当 n 大于 30 时抛出异常 def fib(n): if n > 30: raise Exception('can not > 30, now %s' % n) if n <= 2: return 1 return fib(n-1) + fib(n-2) 准备数组 nu

随机推荐