Java排序实现的心得分享

1.概述
排序和查找是程序设计里的两类非常基本的问题,而现在也存在很多经典的算法用于解决这两类问题,本文主要对java中排序算法实现进行一个基本的探讨,希望能够起到抛砖引玉的作用。在此之前,首先问各位几个问题:你能写出一个正确的快排吗?快排在什么情况下真正的快?你的快排足够快吗?还可以进一步优化吗?带着这些问题,我们来看看jre7中快排是如何实现的吧。

Jre7中排序的实现类是DualPivotQuickSort.java,相比jre6有一些改变,主要发生在两个地方,一个是insertion sort的实现上,另一个是QuickSort实现中pivot从一个变成了两个。我们以int型的数组为例,该类中有个排序实现的核心方法,该方法的原型为

代码如下:

void sort(int[] a, int left, int right, boolean leftmost)

参数a为需要排序的数组,left代表需要排序的数组区间中最左边元素的索引,right代表区间中最右边元素的索引,leftmost代表该区间是否是数组中最左边的区间。举个例子:
数组:[2, 4, 8, 5, 6, 3, 0, -3, 9]可以分成三个区间(2, 4, 8){5, 6}<3, 0, -3, 9>
对于()区间,left=0, right=2, leftmost=true
对于 {}区间, left=3, right=4, leftmost=false,同理可得<>区间的相应参数

当区间长度小于47时,该方法会采用插入排序;否则采用快速排序。

2. 插入排序实现
当leftmost为true时,它会采用传统的插入排序(traditional insertion sort),代码也较简单,其过程类似打牌时抓牌插牌:


代码如下:

for (int i = left, j = i; i < right; j = ++i) {
                    int ai = a[i + 1];
                    while (ai < a[j]) {
                        a[j + 1] = a[j];
                        if (j-- == left) {
                            break;
                        }
                    }
                    a[j + 1] = ai;
                }

传统插入排序代码
当leftmost为false时,它采用一种新型的插入排序(pair insertion sort),改进之处在于每次遍历前面已排好序的数组需要插入两个元素,而传统插入排序在遍历过程中只需要为一个元素找到合适的位置插入。对于插入排序来讲,其关键在于为待插入元素找到合适的插入位置,为了找到这个位置,需要遍历之前已经排好序的子数组,所以对于插入排序来讲,整个排序过程中其遍历的元素个数决定了它的性能。很显然,每次遍历插入两个元素可以减少排序过程中遍历的元素个数,其实现代码如下:


代码如下:

for (int k = left; ++left <= right; k = ++left) {
                    int a1 = a[k], a2 = a[left];

if (a1 < a2) {
                        a2 = a1; a1 = a[left];
                    }
                    while (a1 < a[--k]) {
                        a[k + 2] = a[k];
                    }
                    a[++k + 1] = a1;

while (a2 < a[--k]) {
                        a[k + 1] = a[k];
                    }
                    a[k + 1] = a2;
                }

现在有个问题:为什么最左边的区间采用传统插入排序,其他的采用成对插入排序呢?加入用上述成对插入排序代码替换传统插入排序代码,会出现什么问题呢?期待大家自己来回答。。。
3. 快速排序实现
Jre7中对快速排序也做了改进,传统的快速排序是选取一个pivot(jre6种选取pivot的方法是挑选出数组最左边,中间和最右边位置的元素,将其中数值大小排在中间的元素作为pivot),然后分别从两端向中间遍历,把左边遍历过程中遇到的大于pivot的值和右边遍历中遇到的小于等于pivot的值进行交换,当遍历相遇后,插入pivot的值;这样就使得pivot左边的值均小于或等于pivot,pivot右边的值大于pivot;接下来再采用递归的方式对左边和右边分别进行排序。

通过上述分析,我们可以看到:插入排序的每一步是使数组的一个子区间绝对有序,而每一次循环的本质是使这个子区间不断扩大,所以我们可以看到其优化的方向是使每次循环遍历尽可能的使子区间扩大的速度变快,所以上面把每次遍历插入一个元素优化成每次插入两个元素。当然肯定有人会问,那为什么不把这个数字变得更大一点呢?比如每次遍历插入5个,10个。。。很显然,这样是不行,它的一个极端情况就是每次遍历插入n个(n为数组长度)。。。至于为什么,大家自己回答吧。

对于快速排序来讲,其每一次递归所做的是使需要排序的子区间变得更加有序,而不是绝对有序;所以对于快速排序来说,其性能决定于每次递归操作使待排序子区间变得有序的程度,另一个决定因素当然就是递归次数。快速排序使子区间变得相对有序的关键是pivot,所以我们优化的方向也应该在于pivot,那就增加pivot的个数吧,而且我们可以发现,增加pivot的个数,对递归次数并不会有太大影响,有时甚至可以使递归次数减少。和insert sort类似的问题就是,pivot增加为几个呢?很显然,pivot的值也不能太大;记住,任何优化都是有代价的,而增加pivot的代价就隐藏在每次交换元素的位置过程中。关子貌似卖的有点大了。。。下面我们就来看看pivot的值为2时,快速排序是如何实现的吧。其实现过程其实也不难理解:
1.  首先选取两个pivot,pivot的选取方式是将数组分成近视等长的六段,而这六段其实是被5个元素分开的,将这5个元素从小到大排序,取出第2个和第4个,分别作为pivot1和pivot2;
2.  Pivot选取完之后,分别从左右两端向中间遍历,左边遍历停止的条件是遇到一个大于等于pivot1的值,并把那个位置标记为less;右边遍历的停止条件是遇到一个小于等于pivot2的值,并把那个位置标记为great
3.  然后从less位置向后遍历,遍历的位置用k表示,会遇到以下几种情况:
a.  k位置的值比pivot1小,那就交换k位置和less位置的值,并是less的值加1;这样就使得less位置左边的值都小于pivot1,而less位置和k位置之间的值大于等于pivot1
b.  k位置的值大于pivot2,那就从great位置向左遍历,遍历停止条件是遇到一个小于等于pivot2的值,假如这个值小于pivot1,就把这个值写到less位置,把less位置的值写道k位置,把k位置的值写道great位置,最后less++,great--;加入这个值大于等于pivot1,就交换k位置和great位置,之后great—
4.  完成上述过程之后,带排序的子区间就被分成了三段(<pivot1, pivot1<=&&<=pivot2,>pivot2),最后分别对这三段采用递归就行了。


代码如下:

/*
             * Partitioning:
             *
             *   left part           center part                   right part
             * +--------------------------------------------------------------+
             * |  < pivot1  |  pivot1 <= && <= pivot2  |    ?    |  > pivot2  |
             * +--------------------------------------------------------------+
             *               ^                          ^       ^
             *               |                          |       |
             *              less                        k     great
             *
             * Invariants:
             *
             *              all in (left, less)   < pivot1
             *    pivot1 <= all in [less, k)     <= pivot2
             *              all in (great, right) > pivot2
             *
             * Pointer k is the first index of ?-part.
             */

Jre7中对排序实现的核心内容就如上所述,具体细节可参见相应类中的代码,如发现错误或不妥之处,望指正。

(0)

相关推荐

  • java实现合并两个已经排序的列表实例代码

    相对于C++来说,Java的最大特点之一就是没有令人困惑的指针,但是我们不可否认,在某些特定的情境下,指针确实算的上一把利刃.虽然Java中没有明确定义出指针,但是由于类的思想,我们可以使用class来实现指针的操作.小二,上栗子-----合并两个已经排序的列表,输出合并后列表的头结点,且合并后的列表中的元素是有序的. 需要时刻铭记于心的:在Java中,列表的一个节点其实就是某个类实例化的一个对象. 示例代码如下: 复制代码 代码如下: package DecemberOf2013; class

  • javascript 表格内容排序 简单操作示例代码

    复制代码 代码如下: <div id="html"></div> <script> var listInfos = new Array(); listInfos[0] = new Array(); listInfos[0][0] = {'name':'推荐页1','DayCount':666,'AvgTime':29872,'ErrCount':180663,'ErrorRate':'2873%','DaySystemErrorCount':0,'D

  • 快速排序算法原理及java递归实现

    快速排序 对冒泡排序的一种改进,若初始记录序列按关键字有序或基本有序,蜕化为冒泡排序.使用的是递归原理,在所有同数量级O(n longn) 的排序方法中,其平均性能最好.就平均时间而言,是目前被认为最好的一种内部排序方法 基本思想是:通过一躺排序将要排序的数据分割成独立的两部分,其中一部分的所有数据都比另外一部分的所有数据都要小,然后再按此方法对这两部分数据分别进行快速排序,整个排序过程可以递归进行,以此达到整个数据变成有序序列. 三个指针: 第一个指针称为pivotkey指针(枢轴),第二个指

  • javascript中数组的冒泡排序使用示例

    复制代码 代码如下: <html> <head> <title>数组的排序</title> <script> var arr = [2,4,9,11,6,3,88]; //采用冒泡排序,向上冒泡,最小值在最上边 for(var x = 0 ; x < arr.length; x++){//控制趟数 for(var y = x + 1 ; y < arr.length ; y++){ //依次比较,如果后面的元素大于前面的元素则交换 i

  • Java 快速排序(QuickSort)原理及实现代码

    快速排序(QuickSort )是常用到的效率比较高的一种排序算法,在面试过程中也经常提及.下面就详细讲解一下他的原理.给出一个Java版本的实现. 快速排序思想: 通过对数据元素集合Rn 进行一趟排序划分出独立的两个部分.其中一个部分的关键字比另一部分的关键字小.然后再分别对两个部分的关键字进行一趟排序,直到独立的元素只有一个,此时整个元素集合有序. 快速排序的过程--挖坑填数法(这是一个很形象的名称),对一个元素集合R[ low ... high ] ,首先取一个数(一般是R[low] )做

  • java字符串替换排序实例

    复制代码 代码如下: import java.util.LinkedList; public class OJ { public OJ() {  super(); } /*  * 功能:输入一行数字,如果我们把这行数字中的'5'都看成空格,那么就得到一行用空格分隔的非负整数(可能有些整数以'0'开头,这些头部的'0'应该被忽略掉  * ,除非这个整数就是由若干个'0'组成的,这时这个整数就是0). 对这些非负整数按从大到小的顺序排序.  *   * 输入: input,由0~9数字组成的字符串.

  • java排序去重示例分享

    复制代码 代码如下: package action;import java.util.Arrays;import java.util.TreeSet;public class test { /**  * @param args  */ public static void main(String[] args) {  String strs = "ZZZ BBB AAA OOO ZZZ AAA ZZZ BBB AAA ZZZ AAA VVV OOO CCC DDD CCC CCC KKK BBB

  • javaScript对文字按照拼音排序实现代码

    复制代码 代码如下: <title>JavaScript对文字按照拼音排序</title><SCRIPT type="text/javascript">function defaultSort(){var a="zhongguo,daguo,世界,中国,超级大国";a=a.split(",");a.sort();alert(a);}function cusSort(){var a="zhongguo,

  • Java中的数组排序方式(快速排序、冒泡排序、选择排序)

    1.使用JavaApi文档中的Arrays类中的sort()进行快速排序 复制代码 代码如下: import java.util.Arrays; public class TestOne{ public static void main(String [] args){ int [] array={2,0,1,4,5,8}; Arrays.sort(array);//调用Arrays的静态方法Sort进行排序,升序排列 for(int show:array){ System.out.printl

  • 冒泡排序算法原理及JAVA实现代码

    冒泡排序法:关键字较小的记录好比气泡逐趟上浮,关键字较大的记录好比石块下沉,每趟有一块最大的石块沉底. 算法本质:(最大值是关键点,肯定放到最后了,如此循环)每次都从第一位向后滚动比较,使最大值沉底,最小值上升一次,最后一位向前推进(即最后一位刚确定的最大值不再参加比较,比较次数减1) 复杂度: 时间复杂度 O(n2) ,空间复杂度O(1) JAVA源代码(成功运行,需要Date类) 复制代码 代码如下: public static void bubbleSort(Date[] days) { 

  • JAVA简单选择排序算法原理及实现

    简单选择排序:(选出最小值,放在第一位,然后第一位向后推移,如此循环)第一位与后面每一个逐个比较,每次都使最小的置顶,第一位向后推进(即刚选定的第一位是最小值,不再参与比较,比较次数减1) 复杂度: 所需进行记录移动的操作次数较少 0--3(n-1) ,无论记录的初始排列如何,所需的关键字间的比较次数相同,均为n(n-1)/2,总的时间复杂度为O(n2):空间复杂度 O(1) 算法改进:每次对比,都是为了将最小的值放到第一位,所以可以一比到底,找出最小值,直接放到第一位,省去无意义的调换移动操作

  • JAVA算法起步之堆排序实例

    学习堆排序,首先需要明白堆的概念,堆是一个数组.可以近似当做完全二叉树的数组存储方式.但是跟他还有其他的性质,就是类似于二叉排序树.有最大堆跟最小堆之分,最大堆是指根节点的值都大于子节点的值,而最小堆的是根节点的值小于其子节点的值.堆排序一般用的是最大堆,而最小堆可以构造优先队列.堆里面有一个方法是用来维护堆的性质,也就是我们下面代码中的maxheap方法,这是维护最大堆性质的方法,第一个参数就是堆也就是数组,第二个参数是调整堆的具体节点位置,可能这个节点的值不符合最大堆的性质,那么这个值得位置

  • Java实现按中文首字母排序的具体实例

    要实现"按中文首字母排序"操作,可以使用java.util包下的Arrays类的sort()函数. Arrays类包含用来操作数组(比如排序和搜索)的各种方法. 比如对于排序操作的sort()函数,重载了多种静态函数以适应不同情况下的需要. 以下,我们应用最后一个重载函数来实现"按中文首字母排序": 复制代码 代码如下: sort(T[] a, Comparator<? super T> c) 根据指定比较器产生的顺序对指定对象数组进行排序. 代码举例:

  • JAVA算法起步之快速排序实例

    快速排序一听这个名字可能感觉很快,但是他的算法时间复杂度最坏情况却跟插入排序是一样的.之所以成为快速排序是因为他的平均效率比堆排序还要快,快速排序也是基于分治思想与归并排序差不多,但是快速排序是原址的,直接在原数组操作不需要再开辟新的存储空间.快速排序的思想很简单,就是选定一个关键字k将原数组分成两份g1与g2,g1中所有的元素都比k小或者相等,而g2中所有的数据都比k大或者等于,这样对g1与g2分别进行快速排序,最终我们得到的就是一个有序的数组.代码中的sort方法就是对刚才语句的描述.而关键

  • JAVA算法起步之插入排序实例

    趁着过年这段时间,我将算法导论这本书看了一遍,感觉受益匪浅.着这里也根据算法导论中所涉及到的算法用java实现了一遍.第一篇我们就从排序开始,插入排序的原理很简单,就像我们玩扑克牌时一样.如果手里拿的牌比他前一张小,就继续向前比较,知道这张牌比他前面的牌打时候就可以插在他的后面.当然在计算机中我们相应的也需要将对比过的牌向后移一位才可以.这里直接给出算法,相信很多程序员都感觉有些程序比我们的自然语言都要好理解. 复制代码 代码如下: public class Sort { public void

  • Java使用选择排序法对数组排序实现代码

    编写程序,实现将输入的字符串转换为一维数组,并使用选择排序法对数组进行排序. 思路如下: 点击"生成随机数"按钮,创建Random随机数对象:使用JTextArea的setText()方法清空文本域:创建一个整型一维数组,分配长度为10的空间:初始化数组元素,使用Random类的nextInt()方法生成50以内的随机数,使用JTextArea类的append()方法把数组元素显示在文本域控件中:点击"排序"按钮,使用JTextArea类的setText()方法清空

  • Java直接插入排序算法实现

    序:一个爱上Java最初的想法一直没有磨灭:"分享我的学习成果,不管后期技术有多深,打好基础很重要". 工具类Swapper,后期算法会使用这个工具类: 复制代码 代码如下: package com.meritit.sortord.util; /** * One util to swap tow element of Array *  * @author ysjian * @version 1.0 * @email ysjian_pingcx@126.com * @QQ 6466337

  • java操作mongodb基础(查询 排序 输出list)

    复制代码 代码如下: package com.infomorrow.webroot; import java.util.List; import com.mongodb.BasicDBObject;import com.mongodb.DB;import com.mongodb.DBCollection;import com.mongodb.DBCursor;import com.mongodb.DBObject;import com.mongodb.MongoClient; public cl

随机推荐