Python3使用pandas模块读写excel操作示例

本文实例讲述了Python3使用pandas模块读写excel操作。分享给大家供大家参考,具体如下:

前言

Python Data Analysis Library 或 pandas 是基于NumPy 的一种工具,该工具是为了解决数据分析任务而创建的。Pandas 纳入了大量库和一些标准的数据模型,提供了高效地操作大型数据集所需的工具,能使我们快速便捷地处理数据。本文介绍如何用pandas读写excel。

1. 读取excel

读取excel主要通过read_excel函数实现,除了pandas还需要安装第三方库xlrd

pd.read_excel(io, sheetname=0, header=0, skiprows=None, skip_footer=0, index_col=None, names=None, parse_cols=None, parse_dates=False, date_parser=None, na_values=None, thousands=None, convert_float=True, has_index_names=None, converters=None, dtype=None, true_values=None, false_values=None, engine=None, squeeze=False, **kwds)
'''
该函数主要的参数为io、sheetname、header、names、encoding。
io:excel文件,可以是文件路径、文件网址、file-like对象、xlrd workbook;
sheetname:返回指定的sheet,参数可以是字符串(sheet名)、整型(sheet索引)、list(元素为字符串和整型,返回字典{'key':'sheet'})、none(返回字典,全部sheet);
header:指定数据表的表头,参数可以是int、list of ints,即为索引行数为表头;
names:返回指定name的列,参数为array-like对象。
encoding:关键字参数,指定以何种编码读取。
该函数返回pandas中的DataFrame或dict of DataFrame对象,利用DataFrame的相关操作即可读取相应的数据。
'''
#代码示例:
import pandas as pd
excel_path = 'example.xlsx'
d = pd.read_excel(excel_path, sheetname=None)
print(d['sheet1'].example_column_name)

2. 写入excel

写入excel主要通过pandas构造DataFrame,调用to_excel方法实现。

DataFrame.to_excel(excel_writer, sheet_name='Sheet1', na_rep='', float_format=None, columns=None, header=True, index=True, index_label=None, startrow=0, startcol=0, engine=None, merge_cells=True, encoding=None, inf_rep='inf', verbose=True, freeze_panes=None)
'''
该函数主要参数为:excel_writer。
excel_writer:写入的目标excel文件,可以是文件路径、ExcelWriter对象;
sheet_name:被写入的sheet名称,string类型,默认为'sheet1';
na_rep:缺失值表示,string类型;
header:是否写表头信息,布尔或list of string类型,默认为True;
index:是否写行号,布尔类型,默认为True;
encoding:指定写入编码,string类型。
'''
import pandas as pd
writer = pd.ExcelWriter('output.xlsx')
df1 = pd.DataFrame(data={'col1':[1,1], 'col2':[2,2]})
df1.to_excel(writer,'Sheet1')
writer.save()

更多关于Python相关内容感兴趣的读者可查看本站专题:《Python操作Excel表格技巧总结》、《Python文件与目录操作技巧汇总》、《Python文本文件操作技巧汇总》、《Python数据结构与算法教程》、《Python函数使用技巧总结》、《Python字符串操作技巧汇总》及《Python入门与进阶经典教程》

希望本文所述对大家Python程序设计有所帮助。

(0)

相关推荐

  • python3 pandas 读取MySQL数据和插入的实例

    python 代码如下: # -*- coding:utf-8 -*- import pandas as pd import pymysql import sys from sqlalchemy import create_engine def read_mysql_and_insert(): try: conn = pymysql.connect(host='localhost',user='user1',password='123456',db='test',charset='utf8')

  • Python3.5 Pandas模块之Series用法实例分析

    本文实例讲述了Python3.5 Pandas模块之Series用法.分享给大家供大家参考,具体如下: 1.Pandas模块引入与基本数据结构 2.Series的创建 #!/usr/bin/env python # -*- coding:utf-8 -*- # Author:ZhengzhengLiu #模块引入 import numpy as np import pandas as pd from pandas import Series,DataFrame #1.Series通过numpy一

  • Python3.5 Pandas模块之DataFrame用法实例分析

    本文实例讲述了Python3.5 Pandas模块之DataFrame用法.分享给大家供大家参考,具体如下: 1.DataFrame的创建 (1)通过二维数组方式创建 #!/usr/bin/env python # -*- coding:utf-8 -*- # Author:ZhengzhengLiu import numpy as np import pandas as pd from pandas import Series,DataFrame #1.DataFrame通过二维数组创建 pr

  • python3使用pandas获取股票数据的方法

    如下所示: from pandas_datareader import data, wb from datetime import datetime import matplotlib.pyplot as plt end = datetime.now() start = datetime(end.year - 1, end.month, end.day) alibaba = data.DataReader('BABA', 'yahoo', start, end) alibaba['Adj Clo

  • Python3 pandas 操作列表实例详解

    1.首先需要安装pandas, 安装的时候可能由依赖的包需要安装,根据运行时候的提示,缺少哪个库,就pip 安装哪个库. 2.示例代码 import pandas as pd from pandas import ExcelWriter EX_PATH = "E:\\code\\test2.xlsx" #读取excel里面的内容 data = pd.read_excel(EX_PATH,sheet_name='Sheet1') #新增加一列内容 lista = [21, 21, 20,

  • Python3.5 Pandas模块缺失值处理和层次索引实例详解

    本文实例讲述了Python3.5 Pandas模块缺失值处理和层次索引.分享给大家供大家参考,具体如下: 1.pandas缺失值处理 import numpy as np import pandas as pd from pandas import Series,DataFrame df3 = DataFrame([ ["Tom",np.nan,456.67,"M"], ["Merry",34,345.56,np.nan], [np.nan,np

  • 详解Python3 pandas.merge用法

    摘要 数据分析与建模的时候大部分时间在数据准备上,包括对数据的加载.清理.转换以及重塑.pandas提供了一组高级的.灵活的.高效的核心函数,能够轻松的将数据规整化.这节主要对pandas合并数据集的merge函数进行详解.(用过SQL或其他关系型数据库的可能会对这个方法比较熟悉.)码字不易,喜欢请点赞!!! 1.merge函数的参数一览表 2.创建两个DataFrame 3.pd.merge()方法设置连接字段. 默认参数how是inner内连接,并且会按照相同的字段key进行合并,即等价于o

  • Python3使用pandas模块读写excel操作示例

    本文实例讲述了Python3使用pandas模块读写excel操作.分享给大家供大家参考,具体如下: 前言 Python Data Analysis Library 或 pandas 是基于NumPy 的一种工具,该工具是为了解决数据分析任务而创建的.Pandas 纳入了大量库和一些标准的数据模型,提供了高效地操作大型数据集所需的工具,能使我们快速便捷地处理数据.本文介绍如何用pandas读写excel. 1. 读取excel 读取excel主要通过read_excel函数实现,除了pandas

  • python3结合openpyxl库实现excel操作的实例代码

    一.相关说明: 1.openpyxl(可读写excel表)专门处理Excel2007及以上版本产生的xlsx文件:2007一下的版本为xls结尾的文件,需要使用 xlrd和xlwt库进行操作 2.excel表的文字编码如果是"gb2312" 读取后就会显示乱码,请先转成Unicode 3.workbook: 工作簿,一个excel文件包含多个sheet. 4.sheet:工作表,一个workbook有多个,表名识别,如"sheet1","sheet2&qu

  • node读写Excel操作实例分析

    本文实例讲述了node读写Excel操作.分享给大家供大家参考,具体如下: 目支持写Excel的node.js模块: node-xlsx: 基于Node.js解析excel文件数据及生成excel文件: excel-parser: 基于Node.js解析excel文件数据,支持xls及xlsx格式文件: excel-export : 基于Node.js将数据生成导出excel文件,生成文件格式为xlsx: node-xlrd: 基于node.js从excel文件中提取数据,仅支持xls格式文件.

  • python使用xlrd模块读写Excel文件的方法

    本文实例讲述了python使用xlrd模块读写Excel文件的方法.分享给大家供大家参考.具体如下: 一.安装xlrd模块 到python官网下载http://pypi.python.org/pypi/xlrd模块安装,前提是已经安装了python 环境. 二.使用介绍 1.导入模块 复制代码 代码如下: import xlrd 2.打开Excel文件读取数据 复制代码 代码如下: data = xlrd.open_workbook('excelFile.xls') 3.使用技巧 获取一个工作表

  • 基于node.js的fs核心模块读写文件操作(实例讲解)

    node.js 里fs模块 常用的功能 实现文件的读写 目录的操作 - 同步和异步共存 ,有异步不用同步 - fs.readFile 都不能读取比运行内存大的文件,如果文件偏大也不会使用readFile方法 - 文件大分流读取,stream - 引入fs模块 - let fs=require('fs') 同步读取文件 -fs.readFileSync('路径',utf8); let result=fs.readFileSync('./1.txt','utf8'); 异步读取文件,用参数err捕获

  • Python3中configparser模块读写ini文件并解析配置的用法详解

    Python3中configparser模块简介 configparser 是 Pyhton 标准库中用来解析配置文件的模块,并且内置方法和字典非常接近.Python2.x 中名为 ConfigParser,3.x 已更名小写,并加入了一些新功能. 配置文件的格式如下: [DEFAULT] ServerAliveInterval = 45 Compression = yes CompressionLevel = 9 ForwardX11 = yes [bitbucket.org] User =

  • 详解python的xlwings库读写excel操作总结

    一.总结(点击显示或隐藏总结内容) 一句话总结: xlwings 是 Python 中操作Excel的一个第三方库,支持.xls读写,.xlsx读写,操作非常简单,功能也很强大 1.xlwings 中的逻辑:应用->工作簿->工作表->范围 对应的代码? 应用:一个应用(一个xlwings程序):app = xw.App(visible=True, add_book=False) 工作簿(book):excel文件(excel程序):wb = app.books.add() 工作表(sh

随机推荐