python opencv3实现人脸识别(windows)

本文实例为大家分享了python人脸识别程序,大家可进行测试

#coding:utf-8 

import cv2
import sys
from PIL import Image 

def CatchUsbVideo(window_name, camera_idx):
  cv2.namedWindow(window_name) 

  # 视频来源,可以来自一段已存好的视频,也可以直接来自USB摄像头
  cap = cv2.VideoCapture(camera_idx) 

  # 告诉OpenCV使用人脸识别分类器
  classfier = cv2.CascadeClassifier("C:\\opencv\\build\\etc\\haarcascades\\haarcascade_frontalface_alt2.xml") 

  # 识别出人脸后要画的边框的颜色,RGB格式
  color = (0, 255, 0) 

  while cap.isOpened():
    ok, frame = cap.read() # 读取一帧数据
    if not ok:
      break 

      # 将当前帧转换成灰度图像
    grey = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY) 

    # 人脸检测,1.2和2分别为图片缩放比例和需要检测的有效点数
    faceRects = classfier.detectMultiScale(grey, scaleFactor=1.2, minNeighbors=3, minSize=(32, 32))
    if len(faceRects) > 0: # 大于0则检测到人脸
      for faceRect in faceRects: # 单独框出每一张人脸
        x, y, w, h = faceRect
        cv2.rectangle(frame, (x - 10, y - 10), (x + w + 10, y + h + 10), color, 3) #5控制绿色框的粗细 

    # 显示图像
    cv2.imshow(window_name, frame)
    c = cv2.waitKey(10)
    if c & 0xFF == ord('q'):
      break 

      # 释放摄像头并销毁所有窗口
  cap.release()
  cv2.destroyAllWindows() 

if __name__ == '__main__':
  CatchUsbVideo("FaceRect", 0)
  # if len(sys.argv) != 2:
  #   print("Usage:%s camera_id\r\n" % (sys.argv[0]))
  # else:
  #   CatchUsbVideo("识别人脸区域", int(sys.argv[1])) 

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持我们。

(0)

相关推荐

  • Python+OpenCV人脸检测原理及示例详解

    关于opencv OpenCV 是 Intel 开源计算机视觉库 (Computer Version) .它由一系列 C 函数和少量 C++ 类构成,实现了图像处理和计算机视觉方面的很多通用算法. OpenCV 拥有包括 300 多个 C 函数的跨平台的中.高层 API .它不依赖于其它的外部库 -- 尽管也可以使用某些外部库. OpenCV 对非商业应用和商业应用都是免费 的.同时 OpenCV 提供了对硬件的访问,可以直接访问摄像头,并且 opencv 还提供了一个简单的 GUI(graph

  • python使用opencv进行人脸识别

    环境 ubuntu 12.04 LTS python 2.7.3 opencv 2.3.1-7 安装依赖 sudo apt-get install libopencv-* sudo apt-get install python-opencv sudo apt-get install python-numpy 示例代码 #!/usr/bin/env python #coding=utf-8 import os from PIL import Image, ImageDraw import cv d

  • python调用OpenCV实现人脸识别功能

    Python调用OpenCV实现人脸识别,供大家参考,具体内容如下 硬件环境: Win10 64位 软件环境: Python版本:2.7.3 IDE:JetBrains PyCharm 2016.3.2 Python库: 1.1) opencv-python(3.2.0.6) 搭建过程: OpenCV Python库: 1. PyCharm的插件源中选择opencv-python(3.2.0.6)库安装 题外话:Python入门Tips PS1:如何安装whl文件 1.先安装PIP 2.CMD命

  • 基于python3 OpenCV3实现静态图片人脸识别

    本文采用OpenCV3和Python3 来实现静态图片的人脸识别,采用的是Haar文件级联. 首先需要将OpenCV3源代码中找到data文件夹下面的haarcascades文件夹里面包含了所有的OpenCV的人脸检测的XML文件,这些文件可以用于检测静态,视频文件,摄像头视频流中的人脸,找到haarcascades文件夹后,复制里面的XML文件,在你新建的Python脚本文件目录里面建一个名为cascades的文件夹,并把复制的XML文件粘贴到新建的文件夹中一些有人脸的的图片,这个大家可以自行

  • python+opencv实现的简单人脸识别代码示例

    # 源码如下: #!/usr/bin/env python #coding=utf-8 import os from PIL import Image, ImageDraw import cv def detect_object(image): '''检测图片,获取人脸在图片中的坐标''' grayscale = cv.CreateImage((image.width, image.height), 8, 1) cv.CvtColor(image, grayscale, cv.CV_BGR2GR

  • Python基于OpenCV实现视频的人脸检测

    本文实例为大家分享了基于OpenCV实现视频的人脸检测具体代码,供大家参考,具体内容如下 前提条件 1.摄像头 2.已安装Python和OpenCV3 代码 import cv2 import sys import logging as log import datetime as dt from time import sleep cascPath = "haarcascade_frontalface_default.xml" faceCascade = cv2.CascadeCla

  • python中使用OpenCV进行人脸检测的例子

    OpenCV的人脸检测功能在一般场合还是不错的.而ubuntu正好提供了python-opencv这个包,用它可以方便地实现人脸检测的代码. 写代码之前应该先安装python-opencv: 复制代码 代码如下: $ sudo apt-get install python-opencv 具体原理就不多说了,可以参考一下这篇文章.直接上源码. 复制代码 代码如下: #!/usr/bin/python# -*- coding: UTF-8 -*- # face_detect.py # Face De

  • 详解如何用OpenCV + Python 实现人脸识别

    下午的时候,配好了OpenCV的Python环境,OpenCV的Python环境搭建.于是迫不及待的想体验一下opencv的人脸识别,如下文. 必备知识 Haar-like 通俗的来讲,就是作为人脸特征即可. Haar特征值反映了图像的灰度变化情况.例如:脸部的一些特征能由矩形特征简单的描述,如:眼睛要比脸颊颜色要深,鼻梁两侧比鼻梁颜色要深,嘴巴比周围颜色要深等. opencv api 要想使用opencv,就必须先知道其能干什么,怎么做.于是API的重要性便体现出来了.就本例而言,使用到的函数

  • python结合opencv实现人脸检测与跟踪

    模式识别课上老师留了个实验,在VC++环境下利用OpenCV库编程实现人脸检测与跟踪. 然后就开始下载opencv和vs2012,再然后,配置了好几次还是配置不成功,这里不得不吐槽下微软,软件做这么大,这么难用真的好吗? 于是就尝试了一下使用python完成实验任务,大概过程就是这样子的: 首先,配置运行环境: 下载opencv和python的比较新的版本,推荐opencv2.4.X和python2.7.X. 直接去官网下载就ok了,python安装时一路next就行,下载的opencv.exe

  • python openCV获取人脸部分并存储功能

    本文实例为大家分享了python openCV获取人脸部分并存储的具体代码,供大家参考,具体内容如下 #-*- coding:utf-8 -*- import cv2 import os import time import base64 import numpy as np save_path = 'E:\\opencv\\2018-04-24OpenCv\\RAR\\savetest' faceCascade = cv2.CascadeClassifier( './haarcascade_f

随机推荐