Android实现计步传感器功能

本文对原文:android实现计步功能初探,计步项目进行了精简,移除了进程服务和计时、守护进程、数据库保存等等,方便扩展功能。

本文源码:https://github.com/lifegh/StepOrient

Android4.4以上版本,有些手机有计步传感器可以直接使用,
而有些手机没有,但有加速度传感器,也可以实现计步功能(需要计算加速度波峰波谷来判断人走一步)!

一.调用

public class MainActivity extends AppCompatActivity implements StepSensorBase.StepCallBack{
  .........
  @Override
  public void Step(int stepNum) {
    // 计步回调
    stepText.setText("步数:" + stepNum);
  }

  @Override
  protected void onCreate(Bundle savedInstanceState) {
    super.onCreate(savedInstanceState);
    setContentView(R.layout.activity_main);
    stepText = (TextView) findViewById(R.id.step_text);

    // 开启计步监听, 分为加速度传感器、或计步传感器
    stepSensor = new StepSensorPedometer(this, this);
    if (!stepSensor.registerStep()) {
      Toast.makeText(this, "计步传传感器不可用!", Toast.LENGTH_SHORT).show();
      stepSensor = new StepSensorAcceleration(this, this);
      if (!stepSensor.registerStep()) {
        Toast.makeText(this, "加速度传感器不可用!", Toast.LENGTH_SHORT).show();
      }
    }
  }
  .......
 }

 /**
 * 计步传感器抽象类,子类分为加速度传感器、或计步传感器
 */
public abstract class StepSensorBase implements SensorEventListener {
  private Context context;
  protected StepCallBack stepCallBack;
  protected SensorManager sensorManager;
  protected static int CURRENT_SETP = 0;
  protected boolean isAvailable = false;

  public StepSensorBase(Context context, StepCallBack stepCallBack) {
    this.context = context;
    this.stepCallBack = stepCallBack;
  }

  public interface StepCallBack {
    /**
     * 计步回调
     */
    void Step(int stepNum);
  }

  /**
   * 开启计步
   */
  public boolean registerStep() {
    if (sensorManager != null) {
      sensorManager.unregisterListener(this);
      sensorManager = null;
    }
    sensorManager = SensorUtil.getInstance().getSensorManager(context);
    registerStepListener();
    return isAvailable;
  }

  /**
   * 注册计步监听器
   */
  protected abstract void registerStepListener();

  /**
   * 注销计步监听器
   */
  public abstract void unregisterStep();
}

二.直接使用计步传感器实现计步

/**
 * 计步传感器
 */
public class StepSensorPedometer extends StepSensorBase {
  private final String TAG = "StepSensorPedometer";
  private int lastStep = -1;
  private int liveStep = 0;
  private int increment = 0;
  private int sensorMode = 0; // 计步传感器类型

  public StepSensorPedometer(Context context, StepCallBack stepCallBack) {
    super(context, stepCallBack);
  }

  @Override
  protected void registerStepListener() {
    Sensor detectorSensor = sensorManager.getDefaultSensor(Sensor.TYPE_STEP_DETECTOR);
    Sensor countSensor = sensorManager.getDefaultSensor(Sensor.TYPE_STEP_COUNTER);
    if (sensorManager.registerListener(this, detectorSensor, SensorManager.SENSOR_DELAY_GAME)) {
      isAvailable = true;
      sensorMode = 0;
      Log.i(TAG, "计步传感器Detector可用!");
    } else if (sensorManager.registerListener(this, countSensor, SensorManager.SENSOR_DELAY_GAME)) {
      isAvailable = true;
      sensorMode = 1;
      Log.i(TAG, "计步传感器Counter可用!");
    } else {
      isAvailable = false;
      Log.i(TAG, "计步传感器不可用!");
    }
  }

  @Override
  public void unregisterStep() {
    sensorManager.unregisterListener(this);
  }

  @Override
  public void onSensorChanged(SensorEvent event) {
    liveStep = (int) event.values[0];
    if (sensorMode == 0) {
      Log.i(TAG, "Detector步数:"+liveStep);
      StepSensorBase.CURRENT_SETP += liveStep;
    } else if (sensorMode == 1) {
      Log.i(TAG, "Counter步数:"+liveStep);
      StepSensorBase.CURRENT_SETP = liveStep;
    }
    stepCallBack.Step(StepSensorBase.CURRENT_SETP);
  }

  @Override
  public void onAccuracyChanged(Sensor sensor, int accuracy) {
  }
}

三.使用加速度传感器实现计步

/**
 * 加速度传感器
 */
public class StepSensorAcceleration extends StepSensorBase {
  private final String TAG = "StepSensorAcceleration";
  //存放三轴数据
  final int valueNum = 5;
  //用于存放计算阈值的波峰波谷差值
  float[] tempValue = new float[valueNum];
  int tempCount = 0;
  //是否上升的标志位
  boolean isDirectionUp = false;
  //持续上升次数
  int continueUpCount = 0;
  //上一点的持续上升的次数,为了记录波峰的上升次数
  int continueUpFormerCount = 0;
  //上一点的状态,上升还是下降
  boolean lastStatus = false;
  //波峰值
  float peakOfWave = 0;
  //波谷值
  float valleyOfWave = 0;
  //此次波峰的时间
  long timeOfThisPeak = 0;
  //上次波峰的时间
  long timeOfLastPeak = 0;
  //当前的时间
  long timeOfNow = 0;
  //当前传感器的值
  float gravityNew = 0;
  //上次传感器的值
  float gravityOld = 0;
  //动态阈值需要动态的数据,这个值用于这些动态数据的阈值
  final float initialValue = (float) 1.7;
  //初始阈值
  float ThreadValue = (float) 2.0;

  //初始范围
  float minValue = 11f;
  float maxValue = 19.6f;

  /**
   * 0-准备计时  1-计时中 2-正常计步中
   */
  private int CountTimeState = 0;
  public static int TEMP_STEP = 0;
  private int lastStep = -1;
  //用x、y、z轴三个维度算出的平均值
  public static float average = 0;
  private Timer timer;
  // 倒计时3.5秒,3.5秒内不会显示计步,用于屏蔽细微波动
  private long duration = 3500;
  private TimeCount time;

  public StepSensorAcceleration(Context context, StepCallBack stepCallBack) {
    super(context, stepCallBack);
  }

  @Override
  protected void registerStepListener() {
    // 注册加速度传感器
    isAvailable = sensorManager.registerListener(this, sensorManager.getDefaultSensor(Sensor.TYPE_ACCELEROMETER),
        SensorManager.SENSOR_DELAY_GAME);
    if (isAvailable) {
      Log.i(TAG, "加速度传感器可用!");
    } else {
      Log.i(TAG, "加速度传感器不可用!");
    }
  }

  @Override
  public void unregisterStep() {
    sensorManager.unregisterListener(this);
  }

  public void onAccuracyChanged(Sensor arg0, int arg1) {
  }

  public void onSensorChanged(SensorEvent event) {
    Sensor sensor = event.sensor;
    synchronized (this) {
      if (sensor.getType() == Sensor.TYPE_ACCELEROMETER) {
        calc_step(event);
      }
    }
  }

  synchronized private void calc_step(SensorEvent event) {
    average = (float) Math.sqrt(Math.pow(event.values[0], 2)
        + Math.pow(event.values[1], 2) + Math.pow(event.values[2], 2));
    detectorNewStep(average);
  }

  /*
   * 检测步子,并开始计步
   * 1.传入sersor中的数据
   * 2.如果检测到了波峰,并且符合时间差以及阈值的条件,则判定为1步
   * 3.符合时间差条件,波峰波谷差值大于initialValue,则将该差值纳入阈值的计算中
   * */
  public void detectorNewStep(float values) {
    if (gravityOld == 0) {
      gravityOld = values;
    } else {
      if (DetectorPeak(values, gravityOld)) {
        timeOfLastPeak = timeOfThisPeak;
        timeOfNow = System.currentTimeMillis();

        if (timeOfNow - timeOfLastPeak >= 200
            && (peakOfWave - valleyOfWave >= ThreadValue) && (timeOfNow - timeOfLastPeak) <= 2000) {
          timeOfThisPeak = timeOfNow;
          //更新界面的处理,不涉及到算法
          preStep();
        }
        if (timeOfNow - timeOfLastPeak >= 200
            && (peakOfWave - valleyOfWave >= initialValue)) {
          timeOfThisPeak = timeOfNow;
          ThreadValue = Peak_Valley_Thread(peakOfWave - valleyOfWave);
        }
      }
    }
    gravityOld = values;
  }

  private void preStep() {
//    if (CountTimeState == 0) {
//      // 开启计时器
//      time = new TimeCount(duration, 700);
//      time.start();
//      CountTimeState = 1;
//      Log.v(TAG, "开启计时器");
//    } else if (CountTimeState == 1) {
//      TEMP_STEP++;
//      Log.v(TAG, "计步中 TEMP_STEP:" + TEMP_STEP);
//    } else if (CountTimeState == 2) {
    StepSensorBase.CURRENT_SETP++;
//      if (stepCallBack != null) {
    stepCallBack.Step(StepSensorBase.CURRENT_SETP);
//      }
//    }

  }

  /*
   * 检测波峰
   * 以下四个条件判断为波峰:
   * 1.目前点为下降的趋势:isDirectionUp为false
   * 2.之前的点为上升的趋势:lastStatus为true
   * 3.到波峰为止,持续上升大于等于2次
   * 4.波峰值大于1.2g,小于2g
   * 记录波谷值
   * 1.观察波形图,可以发现在出现步子的地方,波谷的下一个就是波峰,有比较明显的特征以及差值
   * 2.所以要记录每次的波谷值,为了和下次的波峰做对比
   * */
  public boolean DetectorPeak(float newValue, float oldValue) {
    lastStatus = isDirectionUp;
    if (newValue >= oldValue) {
      isDirectionUp = true;
      continueUpCount++;
    } else {
      continueUpFormerCount = continueUpCount;
      continueUpCount = 0;
      isDirectionUp = false;
    }

//    Log.v(TAG, "oldValue:" + oldValue);
    if (!isDirectionUp && lastStatus
        && (continueUpFormerCount >= 2 && (oldValue >= minValue && oldValue < maxValue))) {
      peakOfWave = oldValue;
      return true;
    } else if (!lastStatus && isDirectionUp) {
      valleyOfWave = oldValue;
      return false;
    } else {
      return false;
    }
  }

  /*
   * 阈值的计算
   * 1.通过波峰波谷的差值计算阈值
   * 2.记录4个值,存入tempValue[]数组中
   * 3.在将数组传入函数averageValue中计算阈值
   * */
  public float Peak_Valley_Thread(float value) {
    float tempThread = ThreadValue;
    if (tempCount < valueNum) {
      tempValue[tempCount] = value;
      tempCount++;
    } else {
      tempThread = averageValue(tempValue, valueNum);
      for (int i = 1; i < valueNum; i++) {
        tempValue[i - 1] = tempValue[i];
      }
      tempValue[valueNum - 1] = value;
    }
    return tempThread;

  }

  /*
   * 梯度化阈值
   * 1.计算数组的均值
   * 2.通过均值将阈值梯度化在一个范围里
   * */
  public float averageValue(float value[], int n) {
    float ave = 0;
    for (int i = 0; i < n; i++) {
      ave += value[i];
    }
    ave = ave / valueNum;
    if (ave >= 8) {
//      Log.v(TAG, "超过8");
      ave = (float) 4.3;
    } else if (ave >= 7 && ave < 8) {
//      Log.v(TAG, "7-8");
      ave = (float) 3.3;
    } else if (ave >= 4 && ave < 7) {
//      Log.v(TAG, "4-7");
      ave = (float) 2.3;
    } else if (ave >= 3 && ave < 4) {
//      Log.v(TAG, "3-4");
      ave = (float) 2.0;
    } else {
//      Log.v(TAG, "else");
      ave = (float) 1.7;
    }
    return ave;
  }

  class TimeCount extends CountDownTimer {
    public TimeCount(long millisInFuture, long countDownInterval) {
      super(millisInFuture, countDownInterval);
    }

    @Override
    public void onFinish() {
      // 如果计时器正常结束,则开始计步
      time.cancel();
      StepSensorBase.CURRENT_SETP += TEMP_STEP;
      lastStep = -1;
      Log.v(TAG, "计时正常结束");

      timer = new Timer(true);
      TimerTask task = new TimerTask() {
        public void run() {
          if (lastStep == StepSensorBase.CURRENT_SETP) {
            timer.cancel();
            CountTimeState = 0;
            lastStep = -1;
            TEMP_STEP = 0;
            Log.v(TAG, "停止计步:" + StepSensorBase.CURRENT_SETP);
          } else {
            lastStep = StepSensorBase.CURRENT_SETP;
          }
        }
      };
      timer.schedule(task, 0, 2000);
      CountTimeState = 2;
    }

    @Override
    public void onTick(long millisUntilFinished) {
      if (lastStep == TEMP_STEP) {
        Log.v(TAG, "onTick 计时停止:" + TEMP_STEP);
        time.cancel();
        CountTimeState = 0;
        lastStep = -1;
        TEMP_STEP = 0;
      } else {
        lastStep = TEMP_STEP;
      }
    }
  }
}

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持我们。

(0)

相关推荐

  • Android开发中方向传感器定义与用法详解【附指南针实现方法】

    本文实例讲述了Android开发中方向传感器定义与用法.分享给大家供大家参考,具体如下: Android中的方向传感器在生活中是一个很好的应用,典型的例子是指南针的使用,我们先来简单介绍一下传感器中三个参数x,y,z的含义,以一幅图来说明. 补充说明:图中的坐标轴x,y,z和传感器中的X,Y,Z没有任何联系! 如上图所示,绿色部分表示一个手机,带有小圈那一头是手机头部 传感器中的X:如上图所示,规定X正半轴为北,手机头部指向OF方向,此时X的值为0,如果手机头部指向OG方向,此时X值为90,指向

  • Android开发中的重力传感器用法实例详解

    本文实例讲述了Android开发中的重力传感器用法.分享给大家供大家参考,具体如下: 重力传感器与方向传感器的开发步骤类似,只要理清了期中的x,y,z的值之后就可以根据他们的变化来进行编程了,首先来看一副图 假设当地的重力加速度值为g 当手机正面朝上的时候,z的值为q,反面朝上的时候,z的值为-g 当手机右侧面朝上的时候,x的值为g,右侧面朝上的时候,x的值为-g 当手机上侧面朝上的时候,y的值为g,右侧面朝上的时候,y的值为-g 了解了重力传感器中X,Y,Z的含义之后下面我们就开始学习如何使用

  • Android开发获取传感器数据的方法示例【加速度传感器,磁场传感器,光线传感器,方向传感器】

    本文实例讲述了Android开发获取传感器数据的方法.分享给大家供大家参考,具体如下: package mobile.android.sensor; import java.util.List; import android.app.Activity; import android.hardware.Sensor; import android.hardware.SensorEvent; import android.hardware.SensorEventListener; import an

  • Android亮屏速度分析总结

    前面聊的 最近在调试项目的亮屏速度,我们希望在按下power键后到亮屏这个时间能达到500MS以内,在Rockchip 3399和3288上面的时间都不能达到要求,因此引发了一系列的调试之路. 计算按下power键到亮屏的时间 Android 唤醒时间统计 刚开始的时候,我只在android阶段统计时间,也能看到时间的差异,但是不是最准确的,我统计的时间日志如下 01-18 09:13:40.992 683 772 D SurfaceControl: Excessive delay in set

  • Android四大组件之Service详解

    一.Service简介 Service是Android程序中四大基础组件之一,它和Activity一样都是Context的子类,只不过它没有UI界面,是在后台运行的组件. Service是Android中实现程序后台运行的解决方案,它非常适用于去执行那些不需要和用户交互而且还要求长期运行的任务.Service默认并不会运行在子线程中,它也不运行在一个独立的进程中,它同样执行在UI线程中,因此,不要在Service中执行耗时的操作,除非你在Service中创建了子线程来完成耗时操作. 二.Serv

  • Android编程基于距离传感器控制手机屏幕熄灭的方法详解

    本文实例讲述了Android编程基于距离传感器控制手机屏幕熄灭的方法.分享给大家供大家参考,具体如下: 在现实生活中,打电话的时候手机挨着自己的头,屏幕会熄灭,这是为了不让自己的头按到什么手机键~ 这个功能可以使用距离传感器来实现 P-Sensor距离感应器,可以感应手机和人体距离.具体使用用途是在通话过程中打开P-Sensor,那么当手机屏幕贴近用户脸部时,就会自动感应出手机和人体距离是多少.当小于某一个值时,就会熄灭屏幕,不再接收用户触摸屏幕事件,从而有效的防止通话过程中误触摸事件的出现.

  • Android 获取传感器列表整理及简单实例

    Android 获取传感器列表整理及简单实例 Android 4.4 (API等级19)支持以下传感器: TYPE_ACCELEROMETER 加速度传感器,单位是m/s2,测量应用于设备X.Y.Z轴上的加速度 传感器类型值(Sensor Type):1 (0x00000001) TYPE_AMBIENT_TEMPERATURE 温度传感器,单位是℃ 传感器类型值(Sensor Type): 13 (0x0000000d) TYPE_GAME_ROTATION_VECTOR 游戏动作传感器,不收

  • Android四大组件之Activity详解

    一.Activity的生命周期 首先,我们来了解一下Activity典型的生命周期 一个Activity从启动到结束会以如下顺序经历整个生命周期: onCreate()->onStart()->onResume()->onPause()->onStop()->onDestory().包含了六个部分,还有一个onRestart()没有调用, 下面就来一一介绍 onCreate():当 Activity 第一次创建时会被调用.当 Activity 第一次创建时会被调用.这是生命周

  • Android方向传感器的使用方法

    在应用程序中使用SensorManager.getOrientation()来获得原始数据. public static float[] getOrientation (float[] R, float[] values) 第一个参数是R用来保存磁场和加速度的数据,通过该函数获取方位角. 第二个参数是函数输出,数据自动填充. values[0]:方向角,但用(磁场+加速度)得到的数据范围是(-180-180),也就是说,0表示正北,90表示正东,180/-180表示正南,-90表示正西.而直接通

  • Android传感器SensorEventListener之加速度传感器

    这个类(我的是Activity中)继承SensorEventListener接口 先获取传感器对象,再获取传感器对象的类型 //获取传感器管理对象 SensorManager mSensorManager = (SensorManager)getSystemService(Context.SENSOR_SERVICE); // 获取传感器的类型(TYPE_ACCELEROMETER:加速度传感器) Sensor mSensor = mSensorManager.getDefaultSensor(

随机推荐