Python编程中实现迭代器的一些技巧小结

yield实现迭代器
如引言中的描述,实现一个可迭代的功能要是每次都手动实现iter,next稍稍有点麻烦,所需的代码也是比较客观。在python中也能通过借助yield的方式来实现一个迭代器。yield有一个关键的作能,它能够中断当前的执行逻辑,保持住现场(各种值的状态,执行的位置等等),返回相应的值,下一次执行的时候能够无缝的接着上次的地方继续执行,如此循环反复知道满足事先设置的退出条件或者发生错误强制被中断。
其具体功能是可以当return使用,从函数里返回一个值,不同之处是用yield返回之后,可以让函数从上回yield返回的地点继续执行。也就是说,yield返回函数,交给调用者一个返回值,然后再“瞬移”回去,让函数继续运行, 直到吓一跳yield语句再返回一个新的值。使用yield返回后,调用者实际得到的是一个迭代器对象,迭代器的值就是返回值,而调用该迭代器的next()方法会导致该函数恢复yield语句的执行环境继续往下跑,直到遇到下一个yield为止,如果遇不到yield,就会抛出异常表示迭代结束。
看一个例子:

>>> def test_yield():
... yield 1
... yield 2
... yield (1,2)
...
>>> a = test_yield()
>>> a.next()
1
>>> a.next()
2
>>> a.next()
(1, 2)
>>> a.next()
Traceback (most recent call last):
 File "<stdin>", line 1, in ?
StopIteration

光听描述就觉得和迭代器的工作方式很一致是吧,的确,yield能把它所在的函索变成一个迭代器,拿最经典的菲波那切数列的例子聊简述一下工作的方式:

def fab(max):
 n, a, b = 0, 0, 1
 while n < max:
 print b, "is generated"
 yield b
 a, b = b, a + b
 n = n + 1 

>>> for item in fab(5):
... print item
...
1 is generated
1
1 is generated
1
2 is generated
2
3 is generated
3
5 is generated
5

我们有回想一下for关键字的语法糖,在这里遍历5以内的菲波那切数列值的时候,很显然fab(5)生成了一个可迭代的对象,遍历开始的时候它的iter方法被调用返回一个实际工作的迭代器对象,然后每一次调用它的next方法返回一个菲波那切数列值然后打印出来。
我们可以将调用生成器函数返回的对象的属性打印出来,看一下到底发生了什么:

>>> temp_gen = fab(5)
>>> dir(temp_gen)
['__class__', '__delattr__', '__doc__', '__format__', '__getattribute__', '__hash__', '__init__', '__iter__', '__name__', '__new__', '__reduce__', '__reduce_ex__', '__repr__', '__setattr__', '__sizeof__', '__str__', '__subclasshook__', 'close', 'gi_code', 'gi_frame', 'gi_running', 'next', 'send', 'throw']

正如上面的描述,单纯调用fab并不会让函数立刻开始返回任何值,并且从打印出的fab(5)的属性列表能够看到,生成器函数返回的对象包含有__iter__,next的实现。与我们手动实现相比,使用yield很方便的就能够实现我们想要的功能,代码量缩减不少。

Generator Expression
python中另一种能更优雅生成迭代器对象的方式就是使用生成器表达式Generator expression,它和列表解析表达式有着非常相似的写法,仅仅是把中括号[]变成()而已,不过小小改变产生的实际效果确实大大的不一样:

>>> temp_gen = (x for x in range(5))
>>> temp_gen
<generator object <genexpr> at 0x7192d8>
>>> for item in temp_gen:
... print item
...
0
1
2
3
4
>>> dir(temp_gen)
['__class__', '__delattr__', '__doc__', '__format__', '__getattribute__', '__hash__', '__init__', '__iter__', '__name__', '__new__', '__reduce__', '__reduce_ex__', '__repr__', '__setattr__', '__sizeof__', '__str__', '__subclasshook__', 'close', 'gi_code', 'gi_frame', 'gi_running', 'next', 'send', 'throw']

看过上面对yield的描述,这个例子以及对应的输出日志还是相当直接明了的,无论是temp_gen的打印日志描述,for语句遍历的输出结果还是调用dir输出的属性列表,都赤裸裸的表明生成器表达式确实生成了能够支持迭代的对象。另外表达式里面也能够调用函数,增加适量的过滤条件。

内置库itertools 和 iter
python内置的库itertools提供了大量的工具方法,这些方法能够帮助我们创建能进行高效遍历和迭代的对象,里面包含不少有意思并且有用的方法,比如像chain, izip/izip_longest, combinations, ifilter等等。在python中还有一个内置的iter函数非常有用,能够返回一个迭代器对象,之后也就能够进行可以查看对应的帮助文档简单看一下:

>>> iter('abc')
<iterator object at 0x718590>
>>> str_iterator = iter('abc')
>>> next(str_iterator)
'a'
>>> next(str_iterator)
'b'
>>> lst_gen = iter([1,2,3,4])
>>> lst_gen
<listiterator object at 0x728e30>
>>> dir(lst_gen)
['__class__', '__delattr__', '__doc__', '__format__', '__getattribute__', '__hash__', '__init__', '__iter__', '__length_hint__', '__new__', '__reduce__', '__reduce_ex__', '__repr__', '__setattr__', '__sizeof__', '__str__', '__subclasshook__', 'next']

>>> help(iter)
Help on built-in function iter in module builtins:

iter(...)
 iter(iterable) -> iterator
 iter(callable, sentinel) -> iterator

 Get an iterator from an object. In the first form, the argument must
 supply its own iterator, or be a sequence.
 In the second form, the callable is called until it returns the sentinel.
(0)

相关推荐

  • Python中的迭代器与生成器高级用法解析

    迭代器 迭代器是依附于迭代协议的对象--基本意味它有一个next方法(method),当调用时,返回序列中的下一个项目.当无项目可返回时,引发(raise)StopIteration异常. 迭代对象允许一次循环.它保留单次迭代的状态(位置),或从另一个角度讲,每次循环序列都需要一个迭代对象.这意味我们可以同时迭代同一个序列不只一次.将迭代逻辑和序列分离使我们有更多的迭代方式. 调用一个容器(container)的__iter__方法创建迭代对象是掌握迭代器最直接的方式.iter函数为我们节约一些

  • Python使用迭代器打印螺旋矩阵的思路及代码示例

    思路 螺旋矩阵是指一个呈螺旋状的矩阵,它的数字由第一行开始到右边不断变大,向下变大, 向左变大,向上变大,如此循环. 螺旋矩阵用二维数组表示,坐标(x,y),即(x轴坐标,y轴坐标). 顺时针螺旋的方向是->右,下,左,上,用数值表示即是x加1格(1,0),y加1格(0,1),x减1格(-1,0),y减1格(0,-1). 坐标从(0,0)开始行走,当超出范围或遇到障碍时切换方向. 螺旋矩阵的打印首先要对n*n的数组进行赋值,根据规律可以看出,每一层都是按照右->下->左->上的顺序

  • python的迭代器与生成器实例详解

    本文以实例详解了python的迭代器与生成器,具体如下所示: 1. 迭代器概述:   迭代器是访问集合元素的一种方式.迭代器对象从集合的第一个元素开始访问,直到所有的元素被访问完结束.迭代器只能往前不会后退,不过这也没什么,因为人们很少在迭代途中往后退.   1.1 使用迭代器的优点   对于原生支持随机访问的数据结构(如tuple.list),迭代器和经典for循环的索引访问相比并无优势,反而丢失了索引值(可以使用内建函数enumerate()找回这个索引值).但对于无法随机访问的数据结构(比

  • 解析Python中的生成器及其与迭代器的差异

    生成器 生成器是一种迭代器,是一种特殊的函数,使用yield操作将函数构造成迭代器.普通的函数有一个入口,有一个返回值:当函数被调用时,从入口开始执行,结束时返回相应的返回值.生成器定义的函数,有多个入口和多个返回值:对生成器执行next()操作,进行生成器的入口开始执行代码,yield操作向调用者返回一个值,并将函数挂起:挂起时,函数执行的环境和参数被保存下来:对生成器执行另一个next()操作时,参数从挂起状态被重新调用,进入上次挂起的执行环境继续下面的操作,到下一个yield操作时重复上面

  • Python的迭代器和生成器

    先说迭代器,对于string.list.dict.tuple等这类容器对象,使用for循环遍历是很方便的.在后台for语句对容器对象调用iter()函数,iter()是python的内置函数.iter()会返回一个定义了next()方法的迭代器对象,它在容器中逐个访问容器内元素,next()也是python的内置函数.在没有后续元素时,next()会抛出一个StopIteration异常,通知for语句循环结束.比如: >>> s = 'abc' >>> it = it

  • Python中Iterator迭代器的使用杂谈

    迭代器是一种支持next()操作的对象.它包含一组元素,当执行next()操作时,返回其中一个元素:当所有元素都被返回后,生成一个StopIteration异常. >>>a=[1,2,3] >>>ia=iter(a) >>>next(ia) 1 >>>next(ia) 2 >>>next(ia) 3 >>>next(ia) Traceback (most recent call last): Fil

  • Python 迭代器工具包【推荐】

    原文:https://git.io/pytips 0x01 介绍了迭代器的概念,即定义了 __iter__() 和 __next__() 方法的对象,或者通过 yield 简化定义的"可迭代对象",而在一些函数式编程语言(见 0x02 Python 中的函数式编程)中,类似的迭代器常被用于产生特定格式的列表(或序列),这时的迭代器更像是一种数据结构而非函数(当然在一些函数式编程语言中,这两者并无本质差异).Python 借鉴了 APL, Haskell, and SML 中的某些迭代器

  • Python使用设计模式中的责任链模式与迭代器模式的示例

    责任链模式 责任链模式:将能处理请求的对象连成一条链,并沿着这条链传递该请求,直到有一个对象处理请求为止,避免请求的发送者和接收者之间的耦合关系. #encoding=utf-8 # #by panda #职责连模式 def printInfo(info): print unicode(info, 'utf-8').encode('gbk') #抽象职责类 class Manager(): successor = None name = '' def __init__(self, name):

  • Python编程中实现迭代器的一些技巧小结

    yield实现迭代器 如引言中的描述,实现一个可迭代的功能要是每次都手动实现iter,next稍稍有点麻烦,所需的代码也是比较客观.在python中也能通过借助yield的方式来实现一个迭代器.yield有一个关键的作能,它能够中断当前的执行逻辑,保持住现场(各种值的状态,执行的位置等等),返回相应的值,下一次执行的时候能够无缝的接着上次的地方继续执行,如此循环反复知道满足事先设置的退出条件或者发生错误强制被中断. 其具体功能是可以当return使用,从函数里返回一个值,不同之处是用yield返

  • 总结Python编程中三条常用的技巧

    在 python 代码中可以看到一些常见的 trick,在这里做一个简单的小结. json 字符串格式化 在开发 web 应用的时候经常会用到 json 字符串,但是一段比较长的 json 字符串是可读性较差的,不容易看出来里面结构的. 这时候就可以用 python 来把 json 字符串漂亮的打印出来. root@Exp-1:/tmp# cat json.txt {"menu": {"breakfast": {"English Muffin":

  • Python编程中NotImplementedError的使用方法

    Python编程中raise可以实现报出错误的功能,而报错的条件可以由程序员自己去定制.在面向对象编程中,可以先预留一个方法接口不实现,在其子类中实现. 如果要求其子类一定要实现,不实现的时候会导致问题,那么采用raise的方式就很好. 而此时产生的问题分类是NotImplementedError. 写一段代码如下: class ClassDemo: def test_demo(self): raiseNotImplementedError("my test: not implemented!&

  • Python编程mac下使用pycharm小技巧

    pycharm创建新文件自动添加文件头注释 背景 我们平时在使用pycharm发现有些大神创建一个新文件的时候会自动在文件头添加一些注释,像是有文件路径,创建时间,创建人,集成平台等信息,但是我们自己创建的时候就没有,不着急,只需要一点的简单的配置就能实现. 方法 通过pycharm->Perferences进入设置模式 选择File and Code Template -> Python Script 在文件中加入以下配置 # -*- coding: utf-8 -*- # @Time :

  • Python编程中的反模式实例分析

    本文实例讲述了Python编程中的反模式.分享给大家供大家参考.具体分析如下: Python是时下最热门的编程语言之一了.简洁而富有表达力的语法,两三行代码往往就能解决十来行C代码才能解决的问题:丰富的标准库和第三方库,大大节约了开发时间,使它成为那些对性能没有严苛要求的开发任务的首选:强大而活跃的社区,齐全的文档,也使很多编程的初学者选择了它作为自己的第一门编程语言.甚至有国外的报道称,Python已经成为了美国顶尖大学里最受欢迎的编程入门教学语言. 要学好一门编程语言实属不易,在初学阶段,就

  • Python编程中*args与**kwargs区别作用详解

    相信学Python的小伙伴肯定有这样的尴尬局面,给一个函数不会用, 原因是:不知道参数列表中的类型是什么意思,比如初学者都会疑问的:*args和**kwargs到底是怎么用. 当你知道这个时,我猜你肯定能会用好多函数了! #*args的用法:当传入的参数个数未知,且不需要知道参数名称时. def func_arg(farg, *args): print("formal arg:", farg) for arg in args: print("another arg:"

  • Python编程中闭包的变量作用域问题解析

    目录 闭包 闭包中的变量 闭包 ​ 在我们使用返回函数的时候,由于我们在一个函数中需要返回另一个函数,因此,我们在这个函数中就需要重新定义一个函数.而这样,就造成了我们的函数嵌套问题.外面的函数相对于里面的函数而言是外函数(outer function),而里面的我们叫他内函数(inner function). def outerFunction(): #外函数 def innerFunction(): #内函数 x = 1 return x return innerFunction #返回值是

  • Python编程中非常重要却又被严重低估的库decorator

    目录 常规的装饰器 使用神库 带参数的装饰器 签名问题有解决? 总结一下 本文已经收录于<Python黑魔法手册>v2.1 版本,在线文档请前往 Python黑魔法手册 2.0 文档 这个库可以帮你做什么呢 ? 其实很简单,就是可以帮你更方便地写python装饰器代码,更重要的是,它让 Python 中被装饰器装饰后的方法长得更像装饰前的方法. 不了解装饰器的可以先去阅读我们之前的文章,非常全且详细的介绍了装饰器的各种实现方法. 常规的装饰器 下面这是一个最简单的装饰器示例,在运行 myfun

  • python编程中简洁优雅的推导式示例详解

    目录 1. 列表推导式 增加条件语句 多重循环 更多用法 2. 字典推导式 3. 集合推导式 4. 元组推导式 Python语言有一种独特的推导式语法,相当于语法糖的存在,可以帮助你在某些场合写出较为精简酷炫的代码.但没有它,也不会有太多影响.Python语言有几种不同类型的推导式. 1. 列表推导式 列表推导式是一种快速生成列表的方式.其形式是用方括号括起来的一段语句,如下例子所示: lis = [x * x for x in range(1, 10)] print(lis) 输出 [1, 4

  • Python编程中内置的NotImplemented类型的用法

    目录 一.NotImplemented它是什么? 二.它有什么用?什么时候用? 一.NotImplemented它是什么? >>> type(NotImplemented) <type 'NotImplementedType'> NotImplemented 是Python在内置命名空间中的六个常数之一.其他有False.True.None.Ellipsis 和 debug.和 Ellipsis很像,[NotImplemented] 能被重新赋值(覆盖).对它赋值,甚至改变属

随机推荐