python实现最大子序和(分治+动态规划)

给定一个整数数组 nums ,找到一个具有最大和的连续子数组(子数组最少包含一个元素),返回其最大和。

示例:

输入: [-2,1,-3,4,-1,2,1,-5,4],
输出: 6
解释: 连续子数组 [4,-1,2,1] 的和最大,为 6。

进阶:

如果你已经实现复杂度为 O(n) 的解法,尝试使用更为精妙的分治法求解。

思路:

首先我们分析题目,我们思考,为什么最大和的连续子数组不包含其他的元素而是这几个呢?因为如果我们想在现有的基础上去扩展当前连续子数组,相邻的元素是一定要被加入的,而相邻元素中可能会减损当前的和。

思路一:

遍历法,On:

算法过程:遍历数组,用onesum去维护当前元素加起来的和。当onesum出现小于0的情况时,我们把它设为0。然后每次都更新全局最大值。

class Solution:
  def maxSubArray(self, nums):
    """
    :type nums: List[int]
    :rtype: int
    """
    #onesum维护当前的和
    onesum = 0
    maxsum = nums[0]
    for i in range(len(nums)):
      onesum += nums[i]
      maxsum = max(maxsum, onesum)
      #出现onesum<0的情况,就设为0,重新累积和
      if onesum < 0:
        onesum = 0
    return maxsum

算法证明:一开始思考数组是个空的,把我们每次选一个nums[i]加入onesum看成当前数组新增了一个元素,也就是用动态的眼光去思考。过程很简单,代码很短,但为什么这样就能达到效果呢?我们进行的加和是按顺序来的,从数组第一个开始加。

当我们的i选出来后,加入onesum。这时有2种情况

1)假设我们这个onesum一直大于0,从未被<0过。那也就是说我们计算的每一次的onesum都大于0,而每一次计算的onesum都是包括开头元素的一段子序列(尾部一直随i变化)。看似我们没有考虑所有可能序列,但实际上所有可能的序列都已经被考虑过了。这里简单讲一下,待会po原文。

a)以当前子序列开头为开头,中间任一处结尾的序列。这种情况是一直在扫描的,也有一直保存更新,所以不用怕丢失信息。

b)以当前子序列结尾为结尾,中间任一处开头的序列。这种情况一定的和小于以当前子序列开头为开头,结尾为结尾的序列。因为前面缺失的那一段经过我们的前提,它也是加和大于0的。

c)以中间元素为开头和结尾的序列。和小于以当前子序列开头为开头,此分序列结尾为结尾的序列。因为前面缺失的那一段经过我们的前提,它也是加和大于0的。

2)出现小于0的情况,就说明我们当前形成的这个子序是第一次出现小于0的情况。现在至少我们要新形成的连续数组不能在整个的包括之前的连续子序了,因为我们在之前的那个连续子序里加出了<0的情况。但问题是我们需不需要保留一些呢?是不是所有以当前子序结尾为结尾的任意开头的子序都要被舍弃呢?答案是是的,因为那一段也一定小于0,因为那一段的加和会小于以当前子序开头为开头,当前子序结尾为结尾的序列(见前面证明)。于是抛弃掉它们,重新开始新的子序。

思路二:

动态规划 On

算法过程:

设sum[i]为以第i个元素结尾的最大的连续子数组的和。假设对于元素i,所有以它前面的元素结尾的子数组的长度都已经求得,那么以第i个元素结尾且和最大的连续子数组实际上,要么是以第i-1个元素结尾且和最大的连续子数组加上这个元素,要么是只包含第i个元素,即sum[i]= max(sum[i-1] + a[i], a[i])。可以通过判断sum[i-1] + a[i]是否大于a[i]来做选择,而这实际上等价于判断sum[i-1]是否大于0。由于每次运算只需要前一次的结果,因此并不需要像普通的动态规划那样保留之前所有的计算结果,只需要保留上一次的即可,因此算法的时间和空间复杂度都很小

class Solution:

  def maxSubArray(self, nums):
    """
    :type nums: List[int]
    :rtype: int
    """
    length=len(nums)
    for i in range(1,length):
      #当前值的大小与前面的值之和比较,若当前值更大,则取当前值,舍弃前面的值之和
      subMaxSum=max(nums[i]+nums[i-1],nums[i])
      nums[i]=subMaxSum#将当前和最大的赋给nums[i],新的nums存储的为和值
    return max(nums) 

算法证明:这道题的代码我直接使用了题目数据中的nums数组,因为只要遍历一遍。nums[i]表示的是以当前这第i号元素结尾(看清了一定要包含当前的这个i)的话,最大的值无非就是看以i-1结尾的最大和的子序能不能加上我这个nums[i],如果nums[i]>0的话,则加上。注意我代码中没有显式地去这样判断,不过我的Max表达的就是这个意思,然后我们把nums[i]确定下来。

思路三:

分治递归

算法过程:

分治法,最大子序和要么在左半部分,要么在右半部分,要么就横跨两部分(即包括左半部分的最后一个元素,和右半部分的第一个元素)。返回这三种情况的最大值即可。第三种情况,其中包括左半部分最后一个元素的情形,需要挨个往前遍历,更新最大值。包含右半部分的第一个元素的情况类似。总的时间复杂度O(nlogn)

class Solution(object):
  def maxSubArray(self, nums):
    #主函数
    left = 0
    #左右边界
    right = len(nums)-1
    #求最大和
    maxSum = self.divide(nums,left,right)
    return maxSum

  def divide(self,nums,left,right):
    #如果只有一个元素就返回
    if left==right:
      return nums[left]
    #确立中心点
    center = (left+right)//2
    #求子序在中心点左边的和
    leftMaxSum = self.divide(nums,left,center)
    #求子序在中心点右边的和
    rightMaxSum = self.divide(nums,center+1,right)

    #求子序横跨2边的和,分成左边界和和右边界和
    leftBorderSum = nums[center]
    leftSum = nums[center]
    for i in range(center-1,left-1,-1):
      leftSum += nums[i]
      if leftSum>leftBorderSum:
        #不断更新左区块的最大值
        leftBorderSum = leftSum

    rightBorderSum = nums[center+1]
    rightSum = nums[center+1]
    for i in range(center+2,right+1):
      rightSum += nums[i]
      if rightSum>rightBorderSum:
        #不断更新右区块的最大值
        rightBorderSum = rightSum
    #左边界的和 + 右边那块的和
    BorderSum = leftBorderSum + rightBorderSum
    return max(leftMaxSum,rightMaxSum,BorderSum)

算法证明:

总的来说还是超级巧妙的。不断的切不断的切数组,把一块数组看成左中右三个部分。实际上这有点像枚举,但我们在枚举时利用了二分的思路,优化了很多。所以枚举当然可以达到我们的目标了,因为我们不断在计算以一定包括中间节点的子序的最大和。

总结:

今天写了很多很多,都没时间复习了。。。但是收获还是很大的。比如动态规划,不一定一定要建立数组然后返回数组的最后一项,动态规划其实是很灵活的。但是动态规划的每一项代表的意义要想好。

分治递归,实际在帮我们算所有数组只不过用了二分的思路优化。

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持我们。

(0)

相关推荐

  • Python实现最大子序和的方法示例

    描述 给定一个序列(至少含有 1 个数),从该序列中寻找一个连续的子序列,使得子序列的和最大. 例如,给定序列 [-2,1,-3,4,-1,2,1,-5,4], 连续子序列 [4,-1,2,1] 的和最大,为 6. 我 v1.0 class Solution: def maxSubArray(self, nums): """ :type nums: List[int] :rtype: int """ l = len(nums) i = 0 res

  • python实现最大子序和(分治+动态规划)

    给定一个整数数组 nums ,找到一个具有最大和的连续子数组(子数组最少包含一个元素),返回其最大和. 示例: 输入: [-2,1,-3,4,-1,2,1,-5,4], 输出: 6 解释: 连续子数组 [4,-1,2,1] 的和最大,为 6. 进阶: 如果你已经实现复杂度为 O(n) 的解法,尝试使用更为精妙的分治法求解. 思路: 首先我们分析题目,我们思考,为什么最大和的连续子数组不包含其他的元素而是这几个呢?因为如果我们想在现有的基础上去扩展当前连续子数组,相邻的元素是一定要被加入的,而相邻

  • Python实现字符串逆序输出功能示例

    本文实例讲述了Python实现字符串逆序输出功能.分享给大家供大家参考,具体如下: 1.有时候我们可能想让字符串倒序输出,下面给出几种方法 方法一:通过索引的方法 >>> strA = "abcdegfgijlk" >>> strA[::-1] 'kljigfgedcba' 方法二:借组列表进行翻转 #coding=utf-8 strA = raw_input("请输入需要翻转的字符串:") order = [] for i in

  • python中的逆序遍历实例

    如果你需要遍历数字序列,可以使用内置range()函数.它会生成数列. range()语法: range(start,end,step=1):顾头不顾尾 正序遍历: range(10):默认step=1,start=0,生成可迭代对象,包含[0, 1, 2, 3, 4, 5, 6, 7, 8, 9] range(1,10):指定start=1,end=10,默认step=1,生成可迭代对象,包含[1, 2, 3, 4, 5, 6, 7, 8, 9] range(1,10,2):指定start=1

  • Python 剪绳子的多种思路实现(动态规划和贪心)

    剑指Offer(Python多种思路实现):剪绳子 面试14题: 题目:剪绳子 题:给你一根长度为n的绳子,请把绳子剪成m段(m,n都是整数,且n>1,m>1),每段绳子的长度记为k[0],k[1],k[2],...,k[m].请问k[0]*k[1]*...*k[m]可能的最大乘积是多少?例如,当绳子的长度为8时,我们把它剪成长度分别为2,3,3的三段,此时得到的最大乘积为18. 解题思路一:基于动态规划和贪婪算法. class Solution: def MaxProductAfterCut

  • python列表的逆序遍历实现

    引题:该题源自一个网友的求助,作为水群龙王的我义不容辞的接下了这道题目,先来看题目: 拿到这道题,题目的意思已经很清楚了,列表里含有2的元素都需要删除,然后输出删除后的新列表.我首先想到的思路就是使用for循环遍历字符串,利用字符串操作符x in s(如果x是s的子串,返回True,否则返回False),使用if函数 ,若为True则删除(remove)该元素.最终输出新列表. 思路代码及运行结果如下(这是错的) 错误实例 观察输出结果,跟原列表相比虽然剔除了一些含2的元素,但是并没有完全剔除,

  • Python机器学习入门(一)序章

    目录 前言 写在前面 1.什么是机器学习? 1.1 监督学习 1.2无监督学习 2.Python中的机器学习 3.必须环境安装 Anacodna安装 总结 前言 每一次变革都由技术驱动.纵观人类历史,上古时代,人类从采集狩猎社会,进化为农业社会:由农业社会进入到工业社会:从工业社会到现在信息社会.每一次变革,都由新技术引导. 在历次的技术革命中,一个人.一家企业,甚至一个国家,可以选择的道路只有两条:要么加入时代的变革,勇立潮头:要么徘徊观望,抱憾终生. 要想成为时代弄潮儿,就要积极拥抱这次智能

  • Python实例练习逆序输出字符串讲解

    目录 1. 问题描述 2. 算法思路 3. 代码实现 第一种切片方式 第二种循环转换 1. 问题描述 输入一个字符串然后对其进行逆序输出 第一种方式:字符串切片 第二种方式:使用循环转换然后逆序输出 比如:输入字符串'hello',逆向输出'olleh' 小伙伴们看了问题描述后,一定要自己先练习,再去看博主的代码和解题思路,才能提高自己的编程水平,全靠自觉哟!!! 2. 算法思路 1.使用循环从字符串的长度减一开始到0结束 2.每次的循环体内,将相应索引的字符添加进列表 3.完成所有的循环之后,

  • Python让列表逆序排列的3种方式小结

    目录 Python列表逆序排列 第一种方法 list.reverse() 第二种方法 使用切片 第三种 使用reversed()方法 怎么 选择使用 python列表技巧(倒序) Python列表逆序排列 第一种方法 list.reverse() 会直接将列表里面的元素倒序排列 不需要创建新的副本储存结果 优点:1.节省内存 缺点:1.直接修改了源数据,如果后面使用源数据的话不方便,需要再倒序一次(多余的操作) mylist = [1, 2, 3, 4, 5] print(mylist) myl

  • Python实现按照指定要求逆序输出一个数字的方法

    本文实例讲述了Python实现按照指定要求逆序输出一个数字的方法.分享给大家供大家参考,具体如下: 问题是:输入一个数字,按照指定要求逆序输出该数字,很简单,下面是实现: #!usr/bin/env python #encoding:utf-8 ''''' __Author__:沂水寒城 功能:逆序输出一个数字 如果数字是正数直接输出如:177--->771 如果数字是负数保留负号如:-945--->-549 如果数字以0结果逆序后需要去除0如:100--->1 如果数字很大会造成溢出返

随机推荐