Python爬虫抓取技术的一些经验

前言

web是一个开放的平台,这也奠定了web从90年代初诞生直至今日将近30年来蓬勃的发展。然而,正所谓成也萧何败也萧何,开放的特性、搜索引擎以及简单易学的html、css技术使得web成为了互联网领域里最为流行和成熟的信息传播媒介;但如今作为商业化软件,web这个平台上的内容信息的版权却毫无保证,因为相比软件客户端而言,你的网页中的内容可以被很低成本、很低的技术门槛实现出的一些抓取程序获取到,这也就是这一系列文章将要探讨的话题—— 网络爬虫 。

有很多人认为web应当始终遵循开放的精神,呈现在页面中的信息应当毫无保留地分享给整个互联网。然而我认为,在IT行业发展至今天,web已经不再是当年那个和pdf一争高下的所谓 “超文本”信息载体 了,它已经是以一种 轻量级客户端软件 的意识形态的存在了。而商业软件发展到今天,web也不得不面对知识产权保护的问题,试想如果原创的高质量内容得不到保护,抄袭和盗版横行网络世界,这其实对web生态的良性发展是不利的,也很难鼓励更多的优质原创内容的生产。

未授权的爬虫抓取程序是危害web原创内容生态的一大元凶,因此要保护网站的内容,首先就要考虑如何反爬虫。

从爬虫的攻防角度来讲

最简单的爬虫,是几乎所有服务端、客户端编程语言都支持的http请求,只要向目标页面的url发起一个http get请求,即可获得到浏览器加载这个页面时的完整html文档,这被我们称之为“同步页”。

作为防守的一方,服务端可以根据http请求头中的User-Agent来检查客户端是否是一个合法的浏览器程序,亦或是一个脚本编写的抓取程序,从而决定是否将真实的页面信息内容下发给你。

这当然是最小儿科的防御手段,爬虫作为进攻的一方,完全可以伪造User-Agent字段,甚至,只要你愿意,http的get方法里, request header的 Referrer 、 Cookie 等等所有字段爬虫都可以轻而易举的伪造。

此时服务端可以利用浏览器http头指纹,根据你声明的自己的浏览器厂商和版本(来自 User-Agent ),来鉴别你的http header中的各个字段是否符合该浏览器的特征,如不符合则作为爬虫程序对待。这个技术有一个典型的应用,就是 PhantomJS 1.x版本中,由于其底层调用了Qt框架的网络库,因此http头里有明显的Qt框架网络请求的特征,可以被服务端直接识别并拦截。

除此之外,还有一种更加变态的服务端爬虫检测机制,就是对所有访问页面的http请求,在 http response 中种下一个 cookie token ,然后在这个页面内异步执行的一些ajax接口里去校验来访请求是否含有cookie token,将token回传回来则表明这是一个合法的浏览器来访,否则说明刚刚被下发了那个token的用户访问了页面html却没有访问html内执行js后调用的ajax请求,很有可能是一个爬虫程序。

如果你不携带token直接访问一个接口,这也就意味着你没请求过html页面直接向本应由页面内ajax访问的接口发起了网络请求,这也显然证明了你是一个可疑的爬虫。知名电商网站Amazon就是采用的这种防御策略。

以上则是基于服务端校验爬虫程序,可以玩出的一些套路手段。

基于客户端js运行时的检测

现代浏览器赋予了JavaScript强大的能力,因此我们可以把页面的所有核心内容都做成js异步请求 ajax 获取数据后渲染在页面中的,这显然提高了爬虫抓取内容的门槛。依靠这种方式,我们把对抓取与反抓取的对抗战场从服务端转移到了客户端浏览器中的js运行时,接下来说一说结合客户端js运行时的爬虫抓取技术。

刚刚谈到的各种服务端校验,对于普通的python、java语言编写的http抓取程序而言,具有一定的技术门槛,毕竟一个web应用对于未授权抓取者而言是黑盒的,很多东西需要一点一点去尝试,而花费大量人力物力开发好的一套抓取程序,web站作为防守一方只要轻易调整一些策略,攻击者就需要再次花费同等的时间去修改爬虫抓取逻辑。

此时就需要使用headless browser了,这是什么技术呢?其实说白了就是,让程序可以操作浏览器去访问网页,这样编写爬虫的人可以通过调用浏览器暴露出来给程序调用的api去实现复杂的抓取业务逻辑。

其实近年来这已经不算是什么新鲜的技术了,从前有基于webkit内核的PhantomJS,基于Firefox浏览器内核的SlimerJS,甚至基于IE内核的trifleJS,有兴趣可以看看这里和这里 是两个headless browser的收集列表。

这些headless browser程序实现的原理其实是把开源的一些浏览器内核C++代码加以改造和封装,实现一个简易的无GUI界面渲染的browser程序。但这些项目普遍存在的问题是,由于他们的代码基于fork官方webkit等内核的某一个版本的主干代码,因此无法跟进一些最新的css属性和js语法,并且存在一些兼容性的问题,不如真正的release版GUI浏览器运行得稳定。

这其中最为成熟、使用率最高的应该当属 PhantonJS 了,对这种爬虫的识别我之前曾写过一篇博客,这里不再赘述。PhantomJS存在诸多问题,因为是单进程模型,没有必要的沙箱保护,浏览器内核的安全性较差。另外,该项目作者已经声明停止维护此项目了。

如今Google Chrome团队在Chrome 59 release版本中开放了headless mode api,并开源了一个基于Node.js调用的headless chromium dirver库,我也为这个库贡献了一个centos环境的部署依赖安装列表。

Headless Chrome可谓是Headless Browser中独树一帜的大杀器,由于其自身就是一个chrome浏览器,因此支持各种新的css渲染特性和js运行时语法。

基于这样的手段,爬虫作为进攻的一方可以绕过几乎所有服务端校验逻辑,但是这些爬虫在客户端的js运行时中依然存在着一些破绽,诸如:

基于plugin对象的检查

if(navigator.plugins.length === 0) {
 console.log('It may be Chrome headless');
}

基于language的检查

if(navigator.languages === '') {
 console.log('Chrome headless detected');
}

基于webgl的检查

var canvas = document.createElement('canvas');
var gl = canvas.getContext('webgl');
var debugInfo = gl.getExtension('WEBGL_debug_renderer_info');
var vendor = gl.getParameter(debugInfo.UNMASKED_VENDOR_WEBGL);
var renderer = gl.getParameter(debugInfo.UNMASKED_RENDERER_WEBGL);
if(vendor == 'Brian Paul' && renderer == 'Mesa OffScreen') {
 console.log('Chrome headless detected');
}

基于浏览器hairline特性的检查

if(!Modernizr['hairline']) {
 console.log('It may be Chrome headless');
}

基于错误img src属性生成的img对象的检查

var body = document.getElementsByTagName('body')[0];
var image = document.createElement('img');
image.src = 'http://iloveponeydotcom32188.jg';
image.setAttribute('id', 'fakeimage');
body.appendChild(image);
image.onerror = function(){
 if(image.width == 0 && image.height == 0) {
 console.log('Chrome headless detected');
 }
}

基于以上的一些浏览器特性的判断,基本可以通杀市面上大多数 Headless Browser 程序。在这一层面上,实际上是将网页抓取的门槛提高,要求编写爬虫程序的开发者不得不修改浏览器内核的C++代码,重新编译一个浏览器,并且,以上几点特征是对浏览器内核的改动其实并不小,如果你曾尝试过编译Blink内核或Gecko内核你会明白这对于一个“脚本小子”来说有多难~

更进一步,我们还可以基于浏览器的 UserAgent 字段描述的浏览器品牌、版本型号信息,对js运行时、DOM和BOM的各个原生对象的属性及方法进行检验,观察其特征是否符合该版本的浏览器所应具备的特征。

这种方式被称为 浏览器指纹检查 技术,依托于大型web站对各型号浏览器api信息的收集。而作为编写爬虫程序的进攻一方,则可以在 Headless Browser 运行时里预注入一些js逻辑,伪造浏览器的特征。

另外,在研究浏览器端利用js api进行 Robots Browser Detect 时,我们发现了一个有趣的小技巧,你可以把一个预注入的js函数,伪装成一个Native Function,来看看下面代码:

var fakeAlert = (function(){}).bind(null);
console.log(window.alert.toString()); // function alert() { [native code] }
console.log(fakeAlert.toString()); // function () { [native code] }

爬虫进攻方可能会预注入一些js方法,把原生的一些api外面包装一层proxy function作为hook,然后再用这个假的js api去覆盖原生api。如果防御者在对此做检查判断时是基于把函数toString之后对[native code]的检查,那么就会被绕过。所以需要更严格的检查,因为bind(null)伪造的方法,在toString之后是不带函数名的,因此你需要在toString之后检查函数名是否为空。

这个技巧有什么用呢?这里延伸一下,反抓取的防御者有一种Robot Detect的办法是在js运行时主动抛出一个alert,文案可以写一些与业务逻辑相关的,正常的用户点确定按钮时必定会有一个1s甚至更长的延时,由于浏览器里alert会阻塞js代码运行(实际上在v8里他会把这个isolate上下文以类似进程挂起的方式暂停执行),所以爬虫程序作为攻击者可以选择以上面的技巧在页面所有js运行以前预注入一段js代码,把alert、prompt、confirm等弹窗方法全部hook伪造。如果防御者在弹窗代码之前先检验下自己调用的alert方法还是不是原生的,这条路就被封死了。

反爬虫的银弹

目前的反抓取、机器人检查手段,最可靠的还是验证码技术。但验证码并不意味着一定要强迫用户输入一连串字母数字,也有很多基于用户鼠标、触屏(移动端)等行为的行为验证技术,这其中最为成熟的当属Google reCAPTCHA,基于机器学习的方式对用户与爬虫进行区分。

基于以上诸多对用户与爬虫的识别区分技术,网站的防御方最终要做的是封禁ip地址或是对这个ip的来访用户施以高强度的验证码策略。这样一来,进攻方不得不购买ip代理池来抓取网站信息内容,否则单个ip地址很容易被封导致无法抓取。抓取与反抓取的门槛被提高到了ip代理池经济费用的层面。

机器人协议

除此之外,在爬虫抓取技术领域还有一个“白道”的手段,叫做robots协议。Allow和Disallow声明了对各个UA爬虫的抓取授权。

不过,这只是一个君子协议,虽具有法律效益,但只能够限制那些商业搜索引擎的蜘蛛程序,你无法对那些“野爬爱好者”加以限制。

写在最后

对网页内容的抓取与反制,注定是一个魔高一尺道高一丈的猫鼠游戏,你永远不可能以某一种技术彻底封死爬虫程序的路,你能做的只是提高攻击者的抓取成本,并对于未授权的抓取行为做到较为精确的获悉。

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持我们。

(0)

相关推荐

  • python爬虫之验证码篇3-滑动验证码识别技术

    滑动验证码介绍 本篇涉及到的验证码为滑动验证码,不同于极验证,本验证码难度略低,需要的将滑块拖动到矩形区域右侧即可完成. 这类验证码不常见了,官方介绍地址为:https://promotion.aliyun.com/ntms/act/captchaIntroAndDemo.html 使用起来肯定是非常安全的了,不是很好通过机器检测 如何判断验证码类型 这个验证码的标识一般比较明显,在页面源码中一般存在一个 nc.js 基本可以判定是阿里云的验证码了 <script type="text/j

  • python爬虫之快速对js内容进行破解

    前言 一般js破解有两种方法,一种是用Python重写js逻辑,一种是利用第三方库来调用js内容获取结果.这两种方法各有利弊,第一种方法性能好,但对js和Python要求掌握比较高:第二种方法快捷便利,对一些复杂js加密很有效.这次我们就用第三方库来进行js破解. 目标网站 本次网站是[企名片],网站对展示的数据进行了加密,所以直接找根本找不到. 目标url:https://www.qimingpian.com/finosda/project/pinvestment js分析调试工具 对js进行

  • 如何使用python爬虫爬取要登陆的网站

    你好 由于你是游客 无法查看本文 请你登录再进 谢谢合作..... 当你在爬某些网站的时候 需要你登录才可以获取数据 咋整? 莫慌 把这几招传授给你 让你以后从容应对 登录的常见方法无非是这两种 1.让你输入帐号和密码登录 2.让你输入帐号密码+验证码登录 今天 先跟你说说第一种 需要验证码的咱们下一篇再讲 第一招 Cookie大法 你平常在上某个不为人知的网站的时候 是不是发现你只要登录一次 就可以一直看到你想要的内容 过了一阵子才需要再次登录 这就是因为 Cookie 在做怪 简单来说 就是

  • python爬虫的一个常见简单js反爬详解

    前言 我们在写爬虫是遇到最多的应该就是js反爬了,今天分享一个比较常见的js反爬,这个我已经在多个网站上见到过了. 我把js反爬分为参数由js加密生成和js生成cookie等来操作浏览器这两部分,今天说的是第二种情况. 目标网站 列表页url:  http://www.hnrexian.com/archives/category/jk. 正常网站我们请求url会返回给我们网页数据内容等,看看这个网站返回给我们的是什么呢? 我们把相应中返回的js代码格式化一下,方便查看. < script typ

  • Python网络爬虫之爬取微博热搜

    微博热搜的爬取较为简单,我只是用了lxml和requests两个库 url= https://s.weibo.com/top/summary?Refer=top_hot&topnav=1&wvr=6 1.分析网页的源代码:右键--查看网页源代码. 从网页代码中可以获取到信息 (1)热搜的名字都在<td class="td-02">的子节点<a>里 (2)热搜的排名都在<td class=td-01 ranktop>的里(注意置顶微博是

  • 检测python爬虫时是否代理ip伪装成功的方法

    有时候我们的爬虫程序添加了代理,但是我们不知道程序是否获取到了ip,尤其是动态转发模式的,这时候就需要进行检测了,以下是一种代理是否伪装成功的检测方式,这里推介使用亿牛云提供的代码示例. Python¶ requests #! -*- encoding:utf-8 -*- import requests import random # 要访问的目标页面 targetUrl = "http://httpbin.org/ip" # 要访问的目标HTTPS页面 # targetUrl = &

  • Python爬虫抓取技术的一些经验

    前言 web是一个开放的平台,这也奠定了web从90年代初诞生直至今日将近30年来蓬勃的发展.然而,正所谓成也萧何败也萧何,开放的特性.搜索引擎以及简单易学的html.css技术使得web成为了互联网领域里最为流行和成熟的信息传播媒介:但如今作为商业化软件,web这个平台上的内容信息的版权却毫无保证,因为相比软件客户端而言,你的网页中的内容可以被很低成本.很低的技术门槛实现出的一些抓取程序获取到,这也就是这一系列文章将要探讨的话题-- 网络爬虫 . 有很多人认为web应当始终遵循开放的精神,呈现

  • Python爬虫抓取代理IP并检验可用性的实例

    经常写爬虫,难免会遇到ip被目标网站屏蔽的情况,银次一个ip肯定不够用,作为节约的程序猿,能不花钱就不花钱,那就自己去找吧,这次就写了下抓取 西刺代理上的ip,但是这个网站也反爬!!! 至于如何应对,我觉得可以通过增加延时试试,可能是我抓取的太频繁了,所以被封IP了. 但是,还是可以去IP巴士试试的,条条大路通罗马嘛,不能吊死在一棵树上. 不废话,上代码. #!/usr/bin/env python # -*- coding:utf8 -*- import urllib2 import time

  • python爬虫抓取时常见的小问题总结

    目录 01 无法正常显示中文? 解决方法 02 加密问题 03 获取不到网页的全部代码? 04 点击下一页时网页网页不变 05 文本节点问题 06 如何快速找到提取数据? 07 获取标签中的数据 08 去除指定内容 09 转化为字符串类型 10 滥用遍历文档树 11 数据库保存问题 12 爬虫采集遇到的墙问题 逃避IP识别 变换请求内容 降低访问频率 慢速攻击判别 13 验证码问题 正向破解 逆向破解 前言: 现在写爬虫,入门已经不是一件门槛很高的事情了,网上教程一大把,但很多爬虫新手在爬取数据

  • 编写Python爬虫抓取暴走漫画上gif图片的实例分享

    本文要介绍的爬虫是抓取暴走漫画上的GIF趣图,方便离线观看.爬虫用的是python3.3开发的,主要用到了urllib.request和BeautifulSoup模块. urllib模块提供了从万维网中获取数据的高层接口,当我们用urlopen()打开一个URL时,就相当于我们用Python内建的open()打开一个文件.但不同的是,前者接收一个URL作为参数,并且没有办法对打开的文件流进行seek操作(从底层的角度看,因为实际上操作的是socket,所以理所当然地没办法进行seek操作),而后

  • Python爬虫抓取手机APP的传输数据

    大多数APP里面返回的是json格式数据,或者一堆加密过的数据 .这里以超级课程表APP为例,抓取超级课程表里用户发的话题. 1.抓取APP数据包 方法详细可以参考这篇博文:Fiddler如何抓取手机APP数据包 得到超级课程表登录的地址:http://120.55.151.61/V2/StudentSkip/loginCheckV4.action 表单: 表单中包括了用户名和密码,当然都是加密过了的,还有一个设备信息,直接post过去就是. 另外必须加header,一开始我没有加header得

  • Python爬虫抓取指定网页图片代码实例

    想要爬取指定网页中的图片主要需要以下三个步骤: (1)指定网站链接,抓取该网站的源代码(如果使用google浏览器就是按下鼠标右键 -> Inspect-> Elements 中的 html 内容) (2)根据你要抓取的内容设置正则表达式以匹配要抓取的内容 (3)设置循环列表,重复抓取和保存内容 以下介绍了两种方法实现抓取指定网页中图片 (1)方法一:使用正则表达式过滤抓到的 html 内容字符串 # 第一个简单的爬取图片的程序 import urllib.request # python自带

  • Python爬虫抓取论坛关键字过程解析

    前言: 之前学习了用python爬虫的基本知识,现在计划用爬虫去做一些实际的数据统计功能.由于前段时间演员的诞生带火了几个年轻的实力派演员,想用爬虫程序搜索某论坛中对于某些演员的讨论热度,并按照日期统计每天的讨论量. 这个项目总共分为两步: 1.获取所有帖子的链接: 将最近一个月内的帖子链接保存到数组中 2.从回帖中搜索演员名字: 从数组中打开链接,翻出该链接的所有回帖,在回帖中查找演员的名字 获取所有帖子的链接: 搜索的范围依然是以虎扑影视区为界限.虎扑影视区一天约5000个回帖,一月下来超过

  • 编写Python爬虫抓取豆瓣电影TOP100及用户头像的方法

    抓取豆瓣电影TOP100 一.分析豆瓣top页面,构建程序结构 1.首先打开网页http://movie.douban.com/top250?start,也就是top页面 然后试着点击到top100的页面,注意带top100的链接依次为 http://movie.douban.com/top250?start=0 http://movie.douban.com/top250?start=25 http://movie.douban.com/top250?start=50 http://movie

  • 你会使用python爬虫抓取弹幕吗

    目录 前言 一.爬虫是什么? 二.饲养步骤 1.请求弹幕 2.解析弹幕 3.存储弹幕 4.总代码 三.总结 前言 时隔108天,何同学在B站发布了最新的视频,<[何同学]我用108天开了个灯…>.那么就让我们用爬虫,爬取视频的弹幕,看看小伙伴们是怎么评价的吧 一.爬虫是什么? 百度百科这样说:自动获取网页内容的程序.在我理解看来,爬虫就是~~“在网络上爬来爬去的…”住口!~~那么接下来就让我们看看如何养搬运B站弹幕的“虫”吧 二.饲养步骤 1.请求弹幕 首先,得知道爬取的网站url是什么.对于

  • Python数据抓取爬虫代理防封IP方法

    爬虫:一段自动抓取互联网信息的程序,从互联网上抓取对于我们有价值的信息,一般来说,Python爬虫程序很多时候都要使用(飞猪IP)代理的IP地址来爬取程序,但是默认的urlopen是无法使用代理的IP的,我就来分享一下Python爬虫怎样使用代理IP的经验.(推荐飞猪代理IP注册可免费使用,浏览器搜索可找到) 1.划重点,小编我用的是Python3哦,所以要导入urllib的request,然后我们调用ProxyHandler,它可以接收代理IP的参数.代理可以根据自己需要选择,当然免费的也是有

随机推荐