redis实现分布式的方法总结

一 为什么使用 Redis

在项目中使用 Redis,主要考虑两个角度:性能和并发。如果只是为了分布式锁这些其他功能,还有其他中间件 Zookpeer 等代替,并非一定要使用 Redis。

性能:

如下图所示,我们在碰到需要执行耗时特别久,且结果不频繁变动的 SQL,就特别适合将运行结果放入缓存。这样,后面的请求就去缓存中读取,使得请求能够迅速响应。

特别是在秒杀系统,在同一时间,几乎所有人都在点,都在下单。。。执行的是同一操作———向数据库查数据。

根据交互效果的不同,响应时间没有固定标准。在理想状态下,我们的页面跳转需要在瞬间解决,对于页内操作则需要在刹那间解决。

并发:

如下图所示,在大并发的情况下,所有的请求直接访问数据库,数据库会出现连接异常。这个时候,就需要使用 Redis 做一个缓冲操作,让请求先访问到 Redis,而不是直接访问数据库。

使用 Redis 的常见问题缓存和数据库双写一致性问题缓存雪崩问题缓存击穿问题缓存的并发竞争问题二 单线程的 Redis 为什么这么快

这个问题是对 Redis 内部机制的一个考察。很多人都不知道 Redis 是单线程工作模型。

原因主要是以下三点:纯内存操作单线程操作,避免了频繁的上下文切换采用了非阻塞 I/O 多路复用机制

仔细说一说 I/O 多路复用机制,打一个比方:小名在 A 城开了一家快餐店店,负责同城快餐服务。小明因为资金限制,雇佣了一批配送员,然后小曲发现资金不够了,只够买一辆车送快递。

经营方式一

客户每下一份订单,小明就让一个配送员盯着,然后让人开车去送。慢慢的小曲就发现了这种经营方式存在下述问题:

时间都花在了抢车上了,大部分配送员都处在闲置状态,抢到车才能去送。

随着下单的增多,配送员也越来越多,小明发现快递店里越来越挤,没办法雇佣新的配送员了。配送员之间的协调很花时间。综合上述缺点,小明痛定思痛,提出了经营方式二。经营方式二

小明只雇佣一个配送员。当客户下单,小明按送达地点标注好,依次放在一个地方。最后,让配送员依次开着车去送,送好了就回来拿下一个。上述两种经营方式对比,很明显第二种效率更高。

在上述比喻中:每个配送员→每个线程每个订单→每个 Socket(I/O 流)订单的送达地点→Socket 的不同状态客户送餐请求→来自客户端的请求明曲的经营方式→服务端运行的代码一辆车→CPU 的核数于是有了如下结论:经营方式一就是传统的并发模型,每个 I/O 流(订单)都有一个新的线程(配送员)管理。经营方式二就是 I/O 多路复用。只有单个线程(一个配送员),通过跟踪每个 I/O 流的状态(每个配送员的送达地点),来管理多个 I/O 流。

下面类比到真实的 Redis 线程模型,如图所示:

Redis-client 在操作的时候,会产生具有不同事件类型的 Socket。在服务端,有一段 I/O 多路复用程序,将其置入队列之中。然后,文件事件分派器,依次去队列中取,转发到不同的事件处理器中。

三 Redis 的数据类型及使用场景

一个合格的程序员,这五种类型都会用到。

String

最常规的 set/get 操作,Value 可以是 String 也可以是数字。一般做一些复杂的计数功能的缓存。

Hash

这里 Value 存放的是结构化的对象,比较方便的就是操作其中的某个字段。我在做单点登录的时候,就是用这种数据结构存储用户信息,以 CookieId 作为 Key,设置 30 分钟为缓存过期时间,能很好的模拟出类似 Session 的效果。

List

使用 List 的数据结构,可以做简单的消息队列的功能。另外,可以利用 lrange 命令,做基于 Redis 的分页功能,性能极佳,用户体验好。

Set

因为 Set 堆放的是一堆不重复值的集合。所以可以做全局去重的功能。我们的系统一般都是集群部署,使用 JVM 自带的 Set 比较麻烦。另外,就是利用交集、并集、差集等操作,可以计算共同喜好,全部的喜好,自己独有的喜好等功能。

Sorted Set

Sorted Set 多了一个权重参数 Score,集合中的元素能够按 Score 进行排列。可以做排行榜应用,取 TOP N 操作。Sorted Set 可以用来做延时任务。

四 Redis 的过期策略和内存淘汰机制

Redis 是否用到家,从这就能看出来。比如你 Redis 只能存 5G 数据,可是你写了 10G,那会删 5G 的数据。怎么删的,这个问题思考过么?

正解:Redis 采用的是定期删除+惰性删除策略。

为什么不用定时删除策略

定时删除,用一个定时器来负责监视 Key,过期则自动删除。虽然内存及时释放,但是十分消耗 CPU 资源。在大并发请求下,CPU 要将时间应用在处理请求,而不是删除 Key,因此没有采用这一策略。

定期删除+惰性删除如何工作

定期删除,Redis 默认每个 100ms 检查,有过期 Key 则删除。需要说明的是,Redis 不是每个 100ms 将所有的 Key 检查一次,而是随机抽取进行检查。如果只采用定期删除策略,会导致很多 Key 到时间没有删除。于是,惰性删除派上用场。

采用定期删除+惰性删除就没其他问题了么

不是的,如果定期删除没删除掉 Key。并且你也没及时去请求 Key,也就是说惰性删除也没生效。这样,Redis 的内存会越来越高。那么就应该采用内存淘汰机制。

在 redis.conf 中有一行配置:

# maxmemory-policy volatile-lru

该配置就是配内存淘汰策略的:noeviction:当内存不足以容纳新写入数据时,新写入操作会报错。allkeys-lru:当内存不足以容纳新写入数据时,在键空间中,移除最近最少使用的 Key。(推荐使用,目前项目在用这种)(最近最久使用算法)allkeys-random:当内存不足以容纳新写入数据时,在键空间中,随机移除某个 Key。(应该也没人用吧,你不删最少使用 Key,去随机删)volatile-lru:当内存不足以容纳新写入数据时,在设置了过期时间的键空间中,移除最近最少使用的 Key。这种情况一般是把 Redis 既当缓存,又做持久化存储的时候才用。(不推荐)volatile-random:当内存不足以容纳新写入数据时,在设置了过期时间的键空间中,随机移除某个 Key。(依然不推荐)volatile-ttl:当内存不足以容纳新写入数据时,在设置了过期时间的键空间中,有更早过期时间的 Key 优先移除。(不推荐)五 Redis 和数据库双写一致性问题

一致性问题还可以再分为最终一致性和强一致性。数据库和缓存双写,就必然会存在不一致的问题。前提是如果对数据有强一致性要求,不能放缓存。我们所做的一切,只能保证最终一致性。

另外,我们所做的方案从根本上来说,只能降低不一致发生的概率。因此,有强一致性要求的数据,不能放缓存。首先,采取正确更新策略,先更新数据库,再删缓存。其次,因为可能存在删除缓存失败的问题,提供一个补偿措施即可,例如利用消息队列。

六 如何应对缓存穿透和缓存雪崩问题

这两个问题,一般中小型传统软件企业很难碰到。如果有大并发的项目,流量有几百万左右,这两个问题一定要深刻考虑。缓存穿透,即黑客故意去请求缓存中不存在的数据,导致所有的请求都怼到数据库上,从而数据库连接异常。

缓存穿透解决方案:利用互斥锁,缓存失效的时候,先去获得锁,得到锁了,再去请求数据库。没得到锁,则休眠一段时间重试。采用异步更新策略,无论 Key 是否取到值,都直接返回。Value 值中维护一个缓存失效时间,缓存如果过期,异步起一个线程去读数据库,更新缓存。需要做缓存预热(项目启动前,先加载缓存)操作。提供一个能迅速判断请求是否有效的拦截机制,比如,利用布隆过滤器,内部维护一系列合法有效的 Key。迅速判断出,请求所携带的 Key 是否合法有效。如果不合法,则直接返回。

缓存雪崩,即缓存同一时间大面积的失效,这个时候又来了一波请求,结果请求都怼到数据库上,从而导致数据库连接异常。

缓存雪崩解决方案:给缓存的失效时间,加上一个随机值,避免集体失效。使用互斥锁,但是该方案吞吐量明显下降了。双缓存。我们有两个缓存,缓存 A 和缓存 B。缓存 A 的失效时间为 20 分钟,缓存 B 不设失效时间。自己做缓存预热操作。然后细分以下几个小点:从缓存 A 读数据库,有则直接返回;A 没有数据,直接从 B 读数据,直接返回,并且异步启动一个更新线程,更新线程同时更新缓存 A 和缓存 B。八 如何解决 Redis 的并发竞争 Key 问题

这个问题大致就是,同时有多个子系统去 Set 一个 Key。这个时候要注意什么呢?大家基本都是推荐用 Redis 事务机制。

但是并不推荐使用 Redis 的事务机制。因为我们的生产环境,基本都是 Redis 集群环境,做了数据分片操作。你一个事务中有涉及到多个 Key 操作的时候,这多个 Key 不一定都存储在同一个 redis-server 上。因此,Redis 的事务机制,十分鸡肋。

如果对这个 Key 操作,不要求顺序

这种情况下,准备一个分布式锁,大家去抢锁,抢到锁就做 set 操作即可,比较简单。

如果对这个 Key 操作,要求顺序

假设有一个 key1,系统 A 需要将 key1 设置为 valueA,系统 B 需要将 key1 设置为 valueB,系统 C 需要将 key1 设置为 valueC。

期望按照 key1 的 value 值按照 valueA > valueB > valueC 的顺序变化。这种时候我们在数据写入数据库的时候,需要保存一个时间戳。

假设时间戳如下:

  • 系统 A key 1 {valueA 3:00}
  • 系统 B key 1 {valueB 3:05}
  • 系统 C key 1 {valueC 3:10}

那么,假设系统 B 先抢到锁,将 key1 设置为{valueB 3:05}。接下来系统 A 抢到锁,发现自己的 valueA 的时间戳早于缓存中的时间戳,那就不做 set 操作了,以此类推。其他方法,比如利用队列,将 set 方法变成串行访问也可以。

(0)

相关推荐

  • Redis实现分布式锁方法详细

    目录 1. 单机数据一致性 2. 分布式数据一致性 3. Redis实现分布式锁 3.1 方式一 3.2 方式二(改进方式一) 3.3 方式三(改进方式二) 3.4 方式四(改进方式三) 3.5 方式五(改进方式四) 3.6 小结 在单体应用中,如果我们对共享数据不进行加锁操作,会出现数据一致性问题,我们的解决办法通常是加锁. 在分布式架构中,我们同样会遇到数据共享操作问题,本文章使用Redis来解决分布式架构中的数据一致性问题. 1. 单机数据一致性 单机数据一致性架构如下图所示:多个可客户访

  • redis实现分布式的方法总结

    一 为什么使用 Redis 在项目中使用 Redis,主要考虑两个角度:性能和并发.如果只是为了分布式锁这些其他功能,还有其他中间件 Zookpeer 等代替,并非一定要使用 Redis. 性能: 如下图所示,我们在碰到需要执行耗时特别久,且结果不频繁变动的 SQL,就特别适合将运行结果放入缓存.这样,后面的请求就去缓存中读取,使得请求能够迅速响应. 特别是在秒杀系统,在同一时间,几乎所有人都在点,都在下单...执行的是同一操作———向数据库查数据. 根据交互效果的不同,响应时间没有固定标准.在

  • 浅析PHP分布式中Redis实现Session的方法

    本文介绍的是PHP分布式中Redis实现Session的方法,下面话不多说,直接先来看两个方法是什么 方法一: 找到配置文件php.ini,修改为下面内容,保存并重启服务 session.save_handler = redis session.save_path = "tcp://127.0.0.1:6379" 方法二: 直接在代码中加入以下内容: ini_set("session.save_handler", "redis"); ini_se

  • Redis实现分布式锁的几种方法总结

    Redis实现分布式锁的几种方法总结 分布式锁是控制分布式系统之间同步访问共享资源的一种方式.在分布式系统中,常常需要协调他们的动作.如果不同的系统或是同一个系统的不同主机之间共享了一个或一组资源,那么访问这些资源的时候,往往需要互斥来防止彼此干扰来保证一致性,在这种情况下,便需要使用到分布式锁. 我们来假设一个最简单的秒杀场景:数据库里有一张表,column分别是商品ID,和商品ID对应的库存量,秒杀成功就将此商品库存量-1.现在假设有1000个线程来秒杀两件商品,500个线程秒杀第一个商品,

  • 基于redis实现分布式锁的原理与方法

    前言 系统的不断扩大,分布式锁是最基本的保障.与单机的多线程不一样的是,分布式跨多个机器.线程的共享变量无法跨机器. 为了保证一个在高并发存场景下只能被同一个线程操作,java并发处理提供ReentrantLock或Synchronized进行互斥控制.但是这仅仅对单机环境有效.我们实现分布式锁大概通过三种方式. redis实现分布式锁 数据库实现分布式锁 zk实现分布式锁 今天我们介绍通过redis实现分布式锁.实际上这三种和java对比看属于一类.都是属于程序外部锁. 原理剖析 上述三种分布

  • SpringBoot中使用redis做分布式锁的方法

    一.模拟问题 最近在公司遇到一个问题,挂号系统是做的集群,比如启动了两个相同的服务,病人挂号的时候可能会出现同号的情况,比如两个病人挂出来的号都是上午2号.这就出现了问题,由于是集群部署的,所以单纯在代码中的方法中加锁是不能解决这种情况的.下面我将模拟这种情况,用redis做分布式锁来解决这个问题. 1.新建挂号明细表 2.在idea上新建项目 下图是创建好的项目结构,上面那个parent项目是其他项目不用管它,和新建的没有关系 3.开始创建controller,service,dao(mapp

  • 基于Redis实现分布式锁的方法(lua脚本版)

    1.前言 在Java中,我们通过锁来避免由于竞争而造成的数据不一致问题.通常我们使用synchronized .Lock来实现.但是Java中的锁只能保证在同一个JVM进程内中可用,在跨JVM进程,例如分布式系统上则不可靠了. 2.分布式锁 分布式锁,是一种思想,它的实现方式有很多,如基于数据库实现.基于缓存(Redis等)实现.基于Zookeeper实现等等.为了确保分布式锁可用,我们至少要确保锁的实现同时满足以下四个条件 互斥性:在任意时刻,只有一个客户端能持有锁. 不会发生死锁:即使客户端

  • Redis实现分布式锁的五种方法详解

    目录 1. 单机数据一致性 2. 分布式数据一致性 3. Redis实现分布式锁 3.1 方式一 3.2 方式二(改进方式一) 3.3 方式三(改进方式二) 3.4 方式四(改进方式三) 3.5 方式五(改进方式四) 3.6 小结 在单体应用中,如果我们对共享数据不进行加锁操作,会出现数据一致性问题,我们的解决办法通常是加锁. 在分布式架构中,我们同样会遇到数据共享操作问题,本文章使用Redis来解决分布式架构中的数据一致性问题. 1. 单机数据一致性 单机数据一致性架构如下图所示:多个可客户访

  • 使用Redis实现分布式锁的方法

    目录 Redis 中的分布式锁如何使用 分布式锁的使用场景 使用 Redis 来实现分布式锁 使用 set key value px milliseconds nx 实现 SETNX+Lua 实现 使用 Redlock 实现分布式锁 锁的续租 看看 SETEX 的源码 为什么 Redis 可以用来做分布式锁 分布式锁如何选择 总结 参考 Redis 中的分布式锁如何使用 分布式锁的使用场景 为了保证我们线上服务的并发性和安全性,目前我们的服务一般抛弃了单体应用,采用的都是扩展性很强的分布式架构.

  • 基于Redis实现分布式锁以及任务队列

    一.前言 双十一刚过不久,大家都知道在天猫.京东.苏宁等等电商网站上有很多秒杀活动,例如在某一个时刻抢购一个原价1999现在秒杀价只要999的手机时,会迎来一个用户请求的高峰期,可能会有几十万几百万的并发量,来抢这个手机,在高并发的情形下会对数据库服务器或者是文件服务器应用服务器造成巨大的压力,严重时说不定就宕机了,另一个问题是,秒杀的东西都是有量的,例如一款手机只有10台的量秒杀,那么,在高并发的情况下,成千上万条数据更新数据库(例如10台的量被人抢一台就会在数据集某些记录下 减1),那次这个

随机推荐