几个常见的MySQL的可优化点归纳总结

索引相关

1. 查询(或更新,删除,可以转换为查询)没有用到索引
这是最基础的步骤,需要对sql执行explain查看执行计划中是否用到了索引,需要重点关注type=ALL, key=NULL的字段。

2.  在索引字段上施加函数

to_char(gmt_created, ‘mmdd') = '0101′

正确的写法

gmt_created between to_date(“20090101″, “yyyymmdd”) and to_date(“20090102″, “yyyymmdd”)

3. 在索引字段上使用全模糊

member_id like ‘%alibab%'

B树无法解决此类问题,可以考虑搜索引擎。
但是member_id like ‘alibab%'可以用到索引。
其实,对任何一个字段使用 like ‘%xxxx%'都是一种不规范的做法,需要能检查到这种错误用法。

4.  多列字段的索引,没有用到前导索引
索引:(memeber_id, group_id)
where group_id=9234,实际上,这个条件是没有办法用到上面的索引的。这是一个很常见的误用。要理解为什么不能用到这个索引,需要理解mysql如何构造多列索引的。
索引是一棵B树,问题是,对于多列索引,mysql将索引字段按照索引建立的顺序进行拼装,组成一个新的字符串,这个字符串被用来做为构建B树的键。所以,在查询条件里,如果没有用到前导列,就没办法访问多列索引的B树。
应该建立索引:(group_id, member_id)

5. 访问到了索引之外的字段
索引(member_id, subject)

select subject from offer where member_id=234

在member_id=234记录数很多的情况下,会优于

select subject, gmt_created from offer where member_id=234

原因是第二条sql会根据索引查找到的rowid访问表里的记录。第一条sql使用索引范围扫描就可以得到结果。
如果某个sql执行次数很多,但是读取的字段没有被索引覆盖,那么,可能需要建立覆盖性索引。

6.  计数count(id)有时比count(*)慢

count(id) === count(1) where id is not null

如果没有(id)索引,那么会用全表扫描,而count(*)会使用最优的索引进行用索引快速全扫描
计数统一使用count(*)

7.  正确使用stop机制
判断member_id在offer表中是否存在记录:

select count(*) from offer where member_id=234 limit 1

优于

select count(*) from offer where member_id=234

原因是第一条sql会在得到第一条符合条件的记录后停止。

高效分页
1.  高效的分页
使用join技术,利用索引查找到符合条件的id,构造成临时表,用这个小的临时表与原表做join

select *
from
(
select t.*, rownum AS rn
from
(select * from blog.blog_article
where domain_id=1
and draft=0
order by domain_id, draft, gmt_created desc) t
where rownum >= 2
) a
where a.rn <= 3

应该改写成

select blog_article.*
from
(
select rid, rownum as rn
from
(
select rowid as id from blog.blog_article
where domain_id=1
and draft=0
order by domain_id, draft, gmt_created desc
) t
where rownum >= 2
) a, blog_article
where a.rn >= 3
and a.rid = blog_article.rowid

2. order by没有用到索引
有索引(a, b,c )
混合排序规则

ORDER BY a ASC, b DESC, c DESC /* mixed sort direction */

缺失了前导列

WHERE g = const ORDER BY b, c /* a prefix is missing */

缺失了中间列

WHERE a = const ORDER BY c /* b is missing */

使用了不在索引中的列进行排序

WHERE a = const ORDER BY a, d /* d is not part of index */

高效地利用primary key
随机查询
一个错误的做法:

select * from title where kind_id=1 order by rand() limit 1;
create index k on title(kind_id);

这个sql执行过程中需要全表扫描,并且将数据保存到临时表,这是一个非常耗时的操作。
改进的做法,利用偏移量。

select round(rand() * count(*)) from title where kind_id=1;
select * from title where kind_id=1 limit 1 offset $random;
create index k on title(kind_id);

相比上面的做法,这种写法能够利用到kind_id上的索引,减少了需要扫描的数据块。但是,如果offset非常大,那么需要扫描的数据块也非常大,极端情况是扫描索引k的所有数据块。
最优的做法,利用主键进行范围查找

select round(rand() * count(*)) from title where kind_id=1;
select * from title where kind_id = and id > $random limit 1;

这个sql利用primary key进行范围查询,完全走索引,并且只读取一条记录,速度非常快。但是,这种用法的限制是primary key必须是int型,并且是连续自增长的。

高效join
1. 小表驱动大表进行join
2. 避免子查询

子查询是一个影响性能的隐患。应该使用join改写sql。

数据类型
1.  避免隐式转换

CREATE TABLE `user` (
`id` smallint(5) unsigned NOT NULL AUTO_INCREMENT,
`account` char(11) NOT NULL COMMENT ”,
`email` varchar(128),
PRIMARY KEY (`id`),
UNIQUE KEY `username` (`account`)
) ENGINE=InnoDB CHARSET=utf8;
mysql> explain select * from user where account=123 \G
*************************** 1. row ***************************
id: 1
select_type: SIMPLE
table: user
type: ALL
possible_keys: username
key: NULL
key_len: NULL
ref: NULL
rows: 2
Extra: Using where
1 row in set (0.00 sec)

可以看到,account=123的条件并没有用到唯一索引`username`。mysql的server从storage engine中读取所有的记录,使用to_number()函数,将记录中的account转换成数字,被转换后的数字用来和参数比较。我们的测试表里有2条记录,而执行计划中rows的值也是2,并且type的值为ALL,这也说明索引`username`并没有被用到。

代码如下:

mysql> explain select * from user where account='123′ \G
*************************** 1. row ***************************
id: 1
select_type: SIMPLE
table: user
type: const
possible_keys: username
key: username
key_len: 33
ref: const
rows: 1
Extra:
1 row in set (0.00 sec)

参数为字符串类型,我们可以看到索引`username`,被使用到了。
这是一个经常被误用的做法。

2. 主键不是自增列
自增列的主键有多个好处:

  • 插入性能高。
  • 减小page的碎片。
  • 提供二级索引的性能,降低二级索引的空间,因为二级索引存储的是主键的值,并不是page中的行id。
(0)

相关推荐

  • 用C++封装MySQL的API的教程

    其实相信每个和mysql打过交道的程序员都应该会尝试去封装一套mysql的接口,这一次的封装已经记不清是我第几次了,但是每一次我希望都能做的比上次更好,更容易使用. 先来说一下这次的封装,遵守了几个原则,其中部分思想是从python借鉴过来的: 1.简单 简单,意味着不为了微小的效率提升,而去把接口搞的复杂.因为本身数据库存储效率的瓶颈并不是那一两次内存copy,代码中随处可以看到以这个为依据的设计.     2.低学习成本 使用一套新库通常意味着投入学习成本,而这次的封装并没有像django那

  • C#连接mysql数据库完整实例

    本文实例讲述了C#连接mysql数据库的方法.分享给大家供大家参考.具体实现方法如下: using System; using System.Configuration; using MySql.Data.MySqlClient; /// <summary> /// TestDatebase 的摘要说明 /// </summary> public class TestDatebase { public TestDatebase() { // // TODO: 在此处添加构造函数逻辑

  • 浅谈MySQL中的触发器

    在很多时候,干得利索不如想的明白.方案应该根据场景来设计,不是盲目的依靠经验,当然这也算新经验! 需求是把公司的几套公共系统做成通过邮箱用户名和密码认证,只需记住一对用户名密码,简单为上,只允许用户在ExtMail的web页面修改密码!在做论坛认证的时候,由于论坛的复杂性,想到了如下的几个方案: 通过OAuth2.0做认证,或者自己写接口,问题是只听过,没玩过! 在邮箱修改时,也提交到论坛的数据库.可惜不会ExtMail的Perl代码,且修改代码工作量太大! 先前已经把线上邮箱用户表同步到内网,

  • 几个常见的MySQL的可优化点归纳总结

    索引相关 1. 查询(或更新,删除,可以转换为查询)没有用到索引 这是最基础的步骤,需要对sql执行explain查看执行计划中是否用到了索引,需要重点关注type=ALL, key=NULL的字段. 2.  在索引字段上施加函数 to_char(gmt_created, 'mmdd') = '0101′ 正确的写法 gmt_created between to_date("20090101″, "yyyymmdd") and to_date("20090102″,

  • MySQL中数据库优化的常见sql语句总结

    目录 1.SHOW ENGINES 2.SHOW PROCESSLIST 3.SHOW STATUS LIKE 'InnoDB_row_lock%' 4.SHOW ENGINE INNODB STATUS 5.SHOW INDEXS 6.ALTER TABLE xx ENGINE = INNODB 7.ANALYZE TABLE 1.SHOW ENGINES 查看执行引擎以及默认引擎. 2.SHOW PROCESSLIST SHOW PROCESSLIST查看当前数据库连接的使用情况,以及各种状

  • Mysql数据库性能优化一

    今天,数据库的操作越来越成为整个应用的性能瓶颈了,这点对于Web应用尤其明显.关于数据库的性能,这并不只是DBA才需要担心的事,而这更是我们程序员需要去关注的事情.当我们去设计数据库表结构,对操作数据库时(尤其是查表时的SQL语句),我们都需要注意数据操作的性能.这里,我们不会讲过多的SQL语句的优化,而只是针对MySQL这一Web应用最多的数据库. mysql的性能优化无法一蹴而就,必须一步一步慢慢来,从各个方面进行优化,最终性能就会有大的提升. Mysql数据库的优化技术 对mysql优化是

  • MySQL性能全面优化方法参考,从CPU,文件系统选择到mysql.cnf参数优化

    本文整理了一些MySQL的通用优化方法,做个简单的总结分享,旨在帮助那些没有专职MySQL DBA的企业做好基本的优化工作,至于具体的SQL优化,大部分通过加适当的索引即可达到效果,更复杂的就需要具体分析了,可以参考本站的一些优化案例或者联系我们 1.硬件层相关优化 1.1.CPU相关 在服务器的BIOS设置中,可调整下面的几个配置,目的是发挥CPU最大性能,或者避免经典的NUMA问题: 1.选择Performance Per Watt Optimized(DAPC)模式,发挥CPU最大性能,跑

  • MySQL中如何优化order by语句

    order by 查询语句使用也是非常频繁,有时候数据量大了会发现排序查询很慢,本文就介绍一下 MySQL 是如何进行排序的,以及如何利用其原理来优化 order by 语句. 建立一张表: CREATE TABLE `cc4` ( `id` INT(11) NOT NULL, `user_name` VARCHAR(16) NOT NULL, `job` VARCHAR(16) NOT NULL, `company` VARCHAR(16) DEFAULT NULL, PRIMARY KEY

  • MYSQL WHERE语句优化

    但请注意,下面的优化并不是完全的.MYSQL实施了许多优化,但我没时间全部测试. MySQL的一些优化列在下面: 删除不必要的括号: ((a AND b) AND c OR (((a AND b) AND (c AND d)))) -> (a AND b AND c) OR (a AND b AND c AND d) 常数调入: (a<b AND b=c) AND a=5 -> b>5 AND b=c AND a=5 删除常数条件: (B>=5 AND B=5) OR (B=

  • mysql limit分页优化详细介绍

    mysql limit分页优化 同样是取10条数据 select * from yanxue8_visit limit 10000,10 和 select * from yanxue8_visit limit 0,10 就不是一个数量级别的. 网上也很多关于limit的五条优化准则,都是翻译自MySQL手册,虽然正确但不实用.今天发现一篇文章写了些关于limit优化的,很不错. 文中不是直接使用limit,而是首先获取到offset的id然后直接使用limit size来获取数据.根据他的数据,

  • 解析MySQL数据库性能优化的六大技巧

    数据库表表面上存在索引和防错机制,然而一个简单的查询就会耗费很长时间.Web应用程序或许在开发环境中运行良好,但在产品环境中表现同样糟糕.如果你是个数据库管理员,你很有可能已经在某个阶段遇到上述情况.因此,本文将介绍对MySQL进行性能优化的技巧和窍门. 1.存储引擎的选择如果数据表需要事务处理,应该考虑使用InnoDB,因为它完全符合ACID特性.如果不需要事务处理,使用默认存储引擎MyISAM是比较明智的.并且不要尝试同时使用这两个存储引擎.思考一下:在一个事务处理中,一些数据表使用Inno

  • MySql批量插入优化Sql执行效率实例详解

    MySql批量插入优化Sql执行效率实例详解 itemcontractprice数量1万左右,每条itemcontractprice 插入5条日志. updateInsertSql.AppendFormat("UPDATE itemcontractprice AS p INNER JOIN foreigncurrency AS f ON p.ForeignCurrencyId = f.ContractPriceId SET p.RemainPrice = f.RemainPrice * {0},

  • 简单实现MySQL服务器的优化配置方法

    公司网站访问量越来越大,MySQL自然成为瓶颈,因此最近我一直在研究 MySQL 的优化,第一步自然想到的是 MySQL 系统参数的优化,作为一个访问量很大的网站(日20万人次以上)的数据库系统,不可能指望 MySQL 默认的系统参数能够让 MySQL运行得非常顺畅.以下的文章主要介绍的是对MySQL服务器的优化配置的时机操作步骤,同时本文也介绍了MySQL服务器的优化配置的实际应用代码,如果你对其相关的实际应用感兴趣的话,你就可以点击以下的文章对其进行了解. 你能用这个命令得到MySQL服务器

随机推荐