C语言数据结构之二叉树的非递归后序遍历算法
C语言数据结构之二叉树的非递归后序遍历算法
前言:
前序、中序、后序的非递归遍历中,要数后序最为麻烦,如果只在栈中保留指向结点的指针,那是不够的,必须有一些额外的信息存放在栈中。
方法有很多,这里只举一种,先定义栈结点的数据结构
typedef struct{Node * p; int rvisited;}SNode //Node 是二叉树的结点结构,rvisited==1代表p所指向的结点的右结点已被访问过。 lastOrderTraverse(BiTree bt){ //首先,从根节点开始,往左下方走,一直走到头,将路径上的每一个结点入栈。 p = bt; while(bt){ push(bt, 0); //push到栈中两个信息,一是结点指针,一是其右结点是否被访问过 bt = bt.lchild; } //然后进入循环体 while(!Stack.empty()){ //只要栈非空 sn = Stack.getTop(); // sn是栈顶结点 //注意,任意一个结点N,只要他有左孩子,则在N入栈之后,N的左孩子必然也跟着入栈了(这个体现在算法的后半部分),所以当我们拿到栈顶元素的时候,可以确信这个元素要么没有左孩子,要么其左孩子已经被访问过,所以此时我们就不关心它的左孩子了,我们只关心其右孩子。 //若其右孩子已经被访问过,或是该元素没有右孩子,则由后序遍历的定义,此时可以visit这个结点了。 if(!sn.p.rchild || sn.rvisited){ p = pop(); visit(p); } else //若它的右孩子存在且rvisited为0,说明以前还没有动过它的右孩子,于是就去处理一下其右孩子。 { //此时我们要从其右孩子结点开始一直往左下方走,直至走到尽头,将这条路径上的所有结点都入栈。 //当然,入栈之前要先将该结点的rvisited设成1,因为其右孩子的入栈意味着它的右孩子必将先于它被访问(这很好理解,因为我们总是从栈顶取出元素来进行visit)。由此可知,下一次该元素再处于栈顶时,其右孩子必然已被visit过了,所以此处可以将rvisited设置为1。 sn.rvisited = 1; //往左下方走到尽头,将路径上所有元素入栈 p = sn.p.rchild; while(p != 0){ push(p, 0); p = p.lchild; } }//这一轮循环已结束,刚刚入栈的那些结点我们不必管它了,下一轮循环会将这些结点照顾的很好。 } }
如有疑问请留言或者到本站社区交流讨论,感谢阅读,希望能帮助到大家,谢谢大家对本站的支持!
相关推荐
-
C语言数据结构之判断循环链表空与满
C语言数据结构之判断循环链表空与满 前言: 何时队列为空?何时为满? 由于入队时尾指针向前追赶头指针,出队时头指针向前追赶尾指针,故队空和队满时头尾指针均相等.因此,我们无法通过front=rear来判断队列"空"还是"满". 注:先进入的为'头',后进入的为'尾'. 解决此问题的方法至少有三种: 其一是另设一个布尔变量以匹别队列的空和满: 其二是少用一个元素的空间,约定入队前,测试尾指针在循环意义下加1后是否等于头指针,若相等则认为队满(注意:rear所指的单元始
-
C语言数据结构递归之斐波那契数列
C语言数据结构递归之斐波那契数列 因为自己对递归还是不太熟练,于是做POJ1753的时候就很吃力,就是翻棋子直到棋盘上所有棋子的颜色一样为止,求最少翻多少次,方法是枚举递归.然后就打算先做另一道递归的题(从数组中取出n个元素的组合),但是同样在递归的问题上不太理解.好吧,于是复习CPP,在第229页的时候,看到了斐波那契数列,回想起之前做过的一道题目,发现可以用递归的方法来做.于是决定优化一下之前的代码. 以下这段摘自<C primer plus> 斐波那契数列的定义如下:第一个和第二个数字都
-
C++数据结构之链表的创建
C++数据结构之链表的创建 前言 1.链表在C/C++里使用非常频繁, 因为它非常使用, 可作为天然的可变数组. push到末尾时对前面的链表项不影响. 反观C数组和std::vector, 一个是静态大小, 一个是增加多了会对之前的元素进行复制改写(线程非常不安全). 2.通常创建链表都是有next这样的成员变量指向下一个项, 通过定义一个head,last来进行链表创建. 参考函数 TestLinkCreateStupid(). 说明 1.其实很早就知道另一种创建方式, 但是一直没总结. 没
-
C语言数据结构之串插入操作
C语言数据结构之串插入操作 实例代码: /* 串的堆分配存储表示 */ #include<stdio.h> #include<string.h> #include<stdlib.h> #define OK 1 #define ERROR 0 #define TRUE 1 #define FALSE 0 #define OVERFLOW -2 typedef int Status; typedef struct { char *ch; //如果是非空串,则按串长分配存储区
-
C语言数据结构中定位函数Index的使用方法
数据结构中定位函数Index的使用方法 实现代码: #include<stdio.h> #include<string.h> #include<stdlib.h> #define OK 1 #define ERROR 0 #define TRUE 1 #define FALSE 0 #define MAXSIZE 40 //最大字符串 typedef int Status; typedef char SString[MAXSIZE+1]; //此处声明的SString[
-
C语言数据结构之二叉树的非递归后序遍历算法
C语言数据结构之二叉树的非递归后序遍历算法 前言: 前序.中序.后序的非递归遍历中,要数后序最为麻烦,如果只在栈中保留指向结点的指针,那是不够的,必须有一些额外的信息存放在栈中. 方法有很多,这里只举一种,先定义栈结点的数据结构 typedef struct{Node * p; int rvisited;}SNode //Node 是二叉树的结点结构,rvisited==1代表p所指向的结点的右结点已被访问过. lastOrderTraverse(BiTree bt){ //首先,从根节点开始,
-
二叉树的非递归后序遍历算法实例详解
前序.中序.后序的非递归遍历中,要数后序最为麻烦,如果只在栈中保留指向结点的指针,那是不够的,必须有一些额外的信息存放在栈中.方法有很多,这里只举一种,先定义栈结点的数据结构 复制代码 代码如下: typedef struct{Node * p; int rvisited;}SNode //Node 是二叉树的结点结构,rvisited==1代表p所指向的结点的右结点已被访问过. lastOrderTraverse(BiTree bt){ //首先,从根节点开始,往左下方走,一直走到头,将路径上
-
C语言非递归后序遍历二叉树
本文实例为大家分享了C语言非递归后序遍历二叉树的具体代码,供大家参考,具体内容如下 法一:实现思路:一个栈 先按 根->右子树->左子树的顺序访问二叉树.访问时不输出.另一个栈存入前一个栈只进栈的结点. 最后输出后一个栈的结点数据. #include<stdio.h> #include<stdlib.h> typedef struct TreeNode{ char element; struct TreeNode *left,*right; }Tree,*BTree;
-
C#非递归先序遍历二叉树实例
本文实例讲述了C#非递归先序遍历二叉树的方法.分享给大家供大家参考.具体如下: using System; using System.Collections.Generic; using System.Linq; using System.Text; using System.Threading.Tasks; namespace ConsoleApplication5 { class Program { static void Main(string[] args) { Node treeRoo
-
java非递归实现之二叉树的前中后序遍历详解
二叉树的前中后序遍历 核心思想:用栈来实现对节点的存储.一边遍历,一边将节点入栈,在需要时将节点从栈中取出来并遍历该节点的左子树或者右子树,重复上述过程,当栈为空时,遍历完成. 前序遍历 //非递归 //根 左 右 class Solution { public List<Integer> preorderTraversal(TreeNode root) { //用数组来存储前序遍历结果 List<Integer> list = new ArrayList<>(); i
-
C++ 非递归实现二叉树的前中后序遍历
目录 二叉树的前序遍历 二叉树的中序遍历 二叉树的后序遍历 二叉树的前序遍历 在不使用递归的方式遍历二叉树时,我们可以使用一个栈模拟递归的机制.二叉树的前序遍历顺序是:根 → 左子树 → 右子树,我们可以先将二叉树的左路结点入栈,在入栈的同时便对其进行访问,此时就相当于完成了根和左子树的访问,当左路结点入栈完毕后再从栈顶依次取出结点,并用同样的方式访问其右子树即可. 具体步骤如下: 将左路结点入栈,入栈的同时访问左路结点. 取出栈顶结点top. 准备访问top结点的右子树. struct Tre
-
深入理解二叉树的非递归遍历
二叉树是一种非常重要的数据结构,很多其它数据结构都是基于二叉树的基础演变而来的.对于二叉树,有前序.中序以及后序三种遍历方法.因为树的定义本身就是递归定义,因此采用递归的方法去实现树的三种遍历不仅容易理解而且代码很简洁.而对于树的遍历若采用非递归的方法,就要采用栈去模拟实现.在三种遍历中,前序和中序遍历的非递归算法都很容易实现,非递归后序遍历实现起来相对来说要难一点.一.前序遍历前序遍历按照"根结点-左孩子-右孩子"的顺序进行访问.1.递归实现 复制代码 代码如下: void preO
-
java二叉树的非递归遍历
二叉树的递归遍历比较简单,这里就不聊了.今天主要聊聊二叉树的非递归遍历,主要借助于"栈"后进先出的特性来保存节点的顺序,先序遍历和中序遍历相对来说比较简单,重点理解后序遍历. 1. 先看看节点类型: //二叉树的节点类型 private class Node{ int data; //节点值 Node leftChild; //左孩子 Node rightChild; //右孩子 public Node(int data) { this.data=data; } } 2.先序遍历. 非
-
Java数据结构最清晰图解二叉树前 中 后序遍历
目录 一,前言 二,树 ①概念 ②树的基础概念 三,二叉树 ①概念 ②两种特殊的二叉树 ③二叉树的性质 四,二叉树遍历 ①二叉树的遍历 ②前序遍历 ③中序遍历 ④后序遍历 五,完整代码 一,前言 二叉树是数据结构中重要的一部分,它的前中后序遍历始终贯穿我们学习二叉树的过程,所以掌握二叉树三种遍历是十分重要的.本篇主要是图解+代码Debug分析,概念的部分讲非常少,重中之重是图解和代码Debug分析,我可以保证你看完此篇博客对于二叉树的前中后序遍历有一个新的认识!!废话不多说,让我们学起来吧!!
-
二叉树递归迭代及morris层序前中后序遍历详解
目录 分析二叉树的前序,中序,后序的遍历步骤 1.层序遍历 方法一:广度优先搜索 方法二:递归 2.前序遍历 3.中序遍历 4.后序遍历 递归解法 前序遍历--递归 迭代解法 前序遍历--迭代 核心思想: 三种迭代解法的总结: Morris遍历 morris--前序遍历 morris--中序遍历 morris--后序遍历: 分析二叉树的前序,中序,后序的遍历步骤 1.层序遍历 方法一:广度优先搜索 (以下解释来自leetcode官方题解) 我们可以用广度优先搜索解决这个问题. 我们可以想到最
随机推荐
- asp.net及javascript判断是否手机访问的方法
- 常见数据库系统比较 DB2数据库
- mongodb在建立一个T级别的数据库时,进程挂掉的解决方法
- JQuery实现鼠标滚轮滑动到页面节点
- 用 或 || 来兼容FireFox
- JAVA线程sleep()和wait()详解及实例
- SpringBoot+Shiro学习之密码加密和登录失败次数限制示例
- 深入学习.net验证码生成及使用方法
- CI框架自动加载session出现报错的解决办法
- Python 类与元类的深度挖掘 II【经验】
- Python中模拟enum枚举类型的5种方法分享
- Spring加载properties文件的方法
- Android DragVideo实现播放视频时任意拖拽的方法
- 基于spring中的aop简单实例讲解
- 基于java内部类作用的深入分析
- python编程开发之类型转换convert实例分析
- Mysql5.6 忘记root密码的解决办法
- iis Service Unavailable解决方法(权限问题)
- Nginx Gzip模块启用和配置指令详解
- Java concurrency线程池之线程池原理(四)_动力节点Java学院整理