python 贪心算法的实现

贪心算法

贪心算法(又称贪婪算法)是指,在对问题求解时,总是做出在当前看来是最好的选择。也就是说,不从整体最优上加以考虑,他所做出的是在某种意义上的局部最优解。

贪心算法不是对所有问题都能得到整体最优解,关键是贪心策略的选择,选择的贪心策略必须具备无后效性,即某个状态以前的过程不会影响以后的状态,只与当前状态有关。

基本思路

思想

贪心算法的基本思路是从问题的某一个初始解出发一步一步地进行,根据某个优化测度,每一步都要确保能获得局部最优解。每一步只考虑一个数据,他的选取应该满足局部优化的条件。若下一个数据和部分最优解连在一起不再是可行解时,就不把该数据添加到部分解中,直到把所有数据枚举完,或者不能再添加算法停止 。

步骤

  1. 遍历初始集合X中的备选元素
  2. 利用贪心策略在X中确定一个元素,并将其加入到可行解S中
  3. 得到可行解S

P即为贪心策略,用来选择符合条件的元素。

例子——硬币找零

假设某国硬币面值有1,5,10,25,100元五种面额,若店员为顾客找零时,需要给顾客找零a=36元,求硬币数最少的情况。

这里我们的贪心策略为:

先找到最接近a的值,然后对a进行更新,然后进行循环。

代码实现

def shortNum(a):
  coins = [1,5,10,25,100]
  out = []
  coins = coins[::-1]

  for i in coins:
    num = a//i
    out=out+[i,]*num
    a = a-num*i
    if a<=0:
      break
  return out
a = 36
print(shortNum(a))

例子——任务规划

问题描述:

输入为任务集合X= [r1,r2,r3,...,rn],每个任务ri,都对应着一个起始时间ai与结束时间bi

要求输出为最多的相容的任务集。

如上图,r1与r2相容,r3与r1和r2都不相容。

那么这里的贪心策略我们可以设为:

  1. 先将结束时间最短的任务加入到S中,
  2. 再从剩下的任务的任务中选择结束时间最短的,且判断与S集合中的任务是否相容
  3. 若不相容,则换下一个时间最短的任务,并进行比较
  4. 循环,直至X为空。

代码实现

# 任务规划
from collections import OrderedDict
task = OrderedDict()
task['r1'] = [0,4]
task['r2'] = [5,8]
task['r3'] = [10,13]
task['r4'] = [15,18]
task['r5'] = [7,11]
task['r6'] = [2,6]
task['r7'] = [2,6]
task['r8'] = [2,6]
task['r9'] = [12,16]
task['r10'] = [12,16]
task['r11'] = [12,16]
task['r12'] = [0,3]

listTask = list(task.items())
# 根据bi进行排序,结束时间早的在前面(冒泡排序)
for i in range(len(listTask)-1):
  for j in range(len(listTask)-i-1):
    if listTask[j][1][1] > listTask[j+1][1][1]:
      listTask[j],listTask[j+1]=listTask[j+1],listTask[j]
print(listTask)
out = []
out.append(listTask.pop(0))
def isValid(temp,out):
  for k in range(len(out)):
    if temp[1][0]<out[k][1][1]:
      # 相交
      return False
  return True

for j in range(len(listTask)):
  temp = listTask.pop(0)
  # 判断是否相交
  #   相交则continue
  #   不相交则out.append(temp)
  for k in range(len(out)):
    if isValid(temp,out):
      out.append(temp)
    # else:continue 语句可以不写
    else:
      continue
print(out)

以上就是python 贪心算法的实现的详细内容,更多关于python 贪心算法的资料请关注我们其它相关文章!

(0)

相关推荐

  • Python贪心算法实例小结

    本文实例讲述了Python贪心算法.分享给大家供大家参考,具体如下: 1. 找零钱问题:假设只有 1 分. 2 分.五分. 1 角.二角. 五角. 1元的硬币.在超市结账 时,如果 需要找零钱, 收银员希望将最少的硬币数找给顾客.那么,给定 需要找的零钱数目,如何求得最少的硬币数呢? # -*- coding:utf-8 -*- def main(): d = [0.01,0.02,0.05,0.1,0.2,0.5,1.0] # 存储每种硬币面值 d_num = [] # 存储每种硬币的数量 s

  • 浅谈Python实现贪心算法与活动安排问题

    贪心算法 原理:在对问题求解时,总是做出在当前看来是最好的选择.也就是说,不从整体最优上加以考虑,他所做出的仅是在某种意义上的局部最优解.贪心算法不是对所有问题都能得到整体最优解,但对范围相当广泛的许多问题他能产生整体最优解或者是整体最优解的近似解. 特性:贪心算法采用自顶向下,以迭代的方法做出相继的贪心选择,每做一次贪心选择就将所求问题简化为一个规模更小的子问题,通过每一步贪心选择,可得到问题的一个最优解,虽然每一步上都要保证能获得局部最优解,但由此产生的全局解有时不一定是最优的,所以贪婪法不

  • Python基于贪心算法解决背包问题示例

    本文实例讲述了Python基于贪心算法解决背包问题.分享给大家供大家参考,具体如下: 贪心算法(又称贪婪算法)是指,在对问题求解时,总是做出在当前看来是最好的选择.也就是说,不从整体最优上加以考虑,他所做出的是在某种意义上的局部最优解. 贪心算法不是对所有问题都能得到整体最优解,关键是贪心策略的选择,选择的贪心策略必须具备无后效性,即某个状态以前的过程不会影响以后的状态,只与当前状态有关. 完全背包问题:给定n个物品和一个容量为C的背包,物品i的重量是Wi,其价值为Vi,背包问题是如何选择入背包

  • python买卖股票的最佳时机(基于贪心/蛮力算法)

    开始刷leetcode算法题 今天做的是"买卖股票的最佳时机" 题目要求 给定一个数组,它的第 i 个元素是一支给定股票第 i 天的价格. 设计一个算法来计算你所能获取的最大利润.你可以尽可能地完成更多的交易(多次买卖一支股票). 注意:你不能同时参与多笔交易(你必须在再次购买前出售掉之前的股票). 看到这个题目 最初的想法是蛮力法 通过两层循环 不断计算不同天之间的利润及利润和 下面上代码 class Solution(object): def maxProfit(self, pri

  • python 贪心算法的实现

    贪心算法 贪心算法(又称贪婪算法)是指,在对问题求解时,总是做出在当前看来是最好的选择.也就是说,不从整体最优上加以考虑,他所做出的是在某种意义上的局部最优解. 贪心算法不是对所有问题都能得到整体最优解,关键是贪心策略的选择,选择的贪心策略必须具备无后效性,即某个状态以前的过程不会影响以后的状态,只与当前状态有关. 基本思路 思想 贪心算法的基本思路是从问题的某一个初始解出发一步一步地进行,根据某个优化测度,每一步都要确保能获得局部最优解.每一步只考虑一个数据,他的选取应该满足局部优化的条件.若

  • python em算法的实现

    ''' 数据集:伪造数据集(两个高斯分布混合) 数据集长度:1000 ------------------------------ 运行结果: ---------------------------- the Parameters set is: alpha0:0.3, mu0:0.7, sigmod0:-2.0, alpha1:0.5, mu1:0.5, sigmod1:1.0 ---------------------------- the Parameters predict is: al

  • python 决策树算法的实现

    ''' 数据集:Mnist 训练集数量:60000 测试集数量:10000 ------------------------------ 运行结果:ID3(未剪枝) 正确率:85.9% 运行时长:356s ''' import time import numpy as np def loadData(fileName): ''' 加载文件 :param fileName:要加载的文件路径 :return: 数据集和标签集 ''' # 存放数据及标记 dataArr = []; labelArr

  • 详解Python查找算法的实现(线性、二分、分块、插值)

    目录 1. 线性查找 2. 二分查找 3. 插值查找 4. 分块查找 5. 总结 查找算法是用来检索序列数据(群体)中是否存在给定的数据(关键字),常用查找算法有: 线性查找:线性查找也称为顺序查找,用于在无序数列中查找. 二分查找:二分查找也称为折半查找,其算法用于有序数列. 插值查找:插值查找是对二分查找算法的改进. 分块查找:又称为索引顺序查找,它是线性查找的改进版本. 树表查找:树表查找又可分二叉查找树.平衡二叉树查找. 哈希查找:哈希查找可以直接通过关键字查找到所需要数据. 因树表查找

  • 详解Python排序算法的实现(冒泡,选择,插入,快速)

    目录 1. 前言 2. 冒泡排序算法 2.1 摆擂台法 2.2 相邻两个数字相比较 3. 选择排序算法 4. 插入排序 5. 快速排序 6. 总结 1. 前言 所谓排序,就是把一个数据群体按个体数据的特征按从大到小或从小到大的顺序存放. 排序在应用开发中很常见,如对商品按价格.人气.购买数量……显示. 初学编程者,刚开始接触的第一个稍微有点难理解的算法应该是排序算法中的冒泡算法. 我初学时,“脑思维”差点绕在 2 个循环结构的世界里出不来了.当时,老师要求我们死记冒泡的口诀,虽然有点搞笑,但是当

  • python冒泡排序算法的实现代码

    1.算法描述:(1)共循环 n-1 次(2)每次循环中,如果 前面的数大于后面的数,就交换(3)设置一个标签,如果上次没有交换,就说明这个是已经好了的. 2.python冒泡排序代码 复制代码 代码如下: #!/usr/bin/python# -*- coding: utf-8 -*- def bubble(l):    flag = True    for i in range(len(l)-1, 0, -1):        if flag:             flag = False

  • python插入排序算法的实现代码

    1.算法:设有一组关键字{ K 1 , K 2 ,-, K n }:排序开始就认为 K 1 是一个有序序列:让 K 2 插入上述表长为 1 的有序序列,使之成为一个表长为 2 的有序序列:然后让 K 3 插入上述表长为 2 的有序序列,使之成为一个表长为 3 的有序序列:依次类推,最后让 K n 插入上述表长为 n-1 的有序序列,得一个表长为 n 的有序序列. 2.python插入排序代码 复制代码 代码如下: def insertion_sort(list2):    for i in ra

  • Java贪心算法超详细讲解

    目录 什么是贪心算法 通过场景理解算法 问题分析 总结 什么是贪心算法 在分析和求解某个问题时,在每一步的计算选择上都是最优的或者最好的,通过这种方式期望最终的计算的结果也是最优的.也就是说,算法通过先追求局部的最优解,从而寻求整体的最优解. 贪心算法的基本步骤: 1.首先定义问题,确定问题模型是不是适合使用贪心算法,即求解最值问题: 2.将求极值的问题进行拆解,然后对拆解后的每一个子问题进行求解,试图获得当前子问题的局部最优解: 3.所有子问题的局部最优解求解完成后,把这些局部最优解进行汇总合

  • 基于ID3决策树算法的实现(Python版)

    实例如下: # -*- coding:utf-8 -*- from numpy import * import numpy as np import pandas as pd from math import log import operator #计算数据集的香农熵 def calcShannonEnt(dataSet): numEntries=len(dataSet) labelCounts={} #给所有可能分类创建字典 for featVec in dataSet: currentLa

随机推荐