Numpy中的数组搜索中np.where方法详细介绍

numpy.where (condition[, x, y])

numpy.where() 有两种用法:

1. np.where(condition, x, y)

满足条件(condition),输出x,不满足输出y。

如果是一维数组,相当于[xv if c else yv for (c,xv,yv) in zip(condition,x,y)]

>>> aa = np.arange(10)
>>> np.where(aa,1,-1)
array([-1, 1, 1, 1, 1, 1, 1, 1, 1, 1]) # 0为False,所以第一个输出-1
>>> np.where(aa > 5,1,-1)
array([-1, -1, -1, -1, -1, -1, 1, 1, 1, 1])

>>> np.where([[True,False], [True,True]],  # 官网上的例子
  [[1,2], [3,4]],
       [[9,8], [7,6]])
array([[1, 8],
  [3, 4]])

上面这个例子的条件为[[True,False], [True,False]],分别对应最后输出结果的四个值。第一个值从[1,9]中选,因为条件为True,所以是选1。第二个值从[2,8]中选,因为条件为False,所以选8,后面以此类推。类似的问题可以再看个例子:

>>> a = 10
>>> np.where([[a > 5,a < 5], [a == 10,a == 7]],
       [["chosen","not chosen"], ["chosen","not chosen"]],
       [["not chosen","chosen"], ["not chosen","chosen"]])

array([['chosen', 'chosen'],
    ['chosen', 'chosen']], dtype='<U10')

2. np.where(condition)

只有条件 (condition),没有x和y,则输出满足条件 (即非0) 元素的坐标 (等价于numpy.nonzero)。这里的坐标以tuple的形式给出,通常原数组有多少维,输出的tuple中就包含几个数组,分别对应符合条件元素的各维坐标。

>>> a = np.array([2,4,6,8,10])
>>> np.where(a > 5)  # 返回索引
(array([2, 3, 4]),)
>>> a[np.where(a > 5)]   # 等价于 a[a>5]
array([ 6, 8, 10])

>>> np.where([[0, 1], [1, 0]])
(array([0, 1]), array([1, 0]))

上面这个例子条件中[[0,1],[1,0]]的真值为两个1,各自的第一维坐标为[0,1],第二维坐标为[1,0] 。

下面看个复杂点的例子:

>>> a = np.arange(27).reshape(3,3,3)
>>> a
array([[[ 0, 1, 2],
    [ 3, 4, 5],
    [ 6, 7, 8]],

    [[ 9, 10, 11],
    [12, 13, 14],
    [15, 16, 17]],

    [[18, 19, 20],
    [21, 22, 23],
    [24, 25, 26]]])

>>> np.where(a > 5)
(array([0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2]),
 array([2, 2, 2, 0, 0, 0, 1, 1, 1, 2, 2, 2, 0, 0, 0, 1, 1, 1, 2, 2, 2]),
 array([0, 1, 2, 0, 1, 2, 0, 1, 2, 0, 1, 2, 0, 1, 2, 0, 1, 2, 0, 1, 2]))

# 符合条件的元素为
  [ 6, 7, 8]],

   [[ 9, 10, 11],
    [12, 13, 14],
    [15, 16, 17]],

   [[18, 19, 20],
    [21, 22, 23],
    [24, 25, 26]]]

所以np.where会输出每个元素的对应的坐标,因为原数组有三维,所以tuple中有三个数组。

补充

np.where和np.searchsorted同属于Numpy数组搜索的一部分,这里先介绍简单的where

import numpy as np
a = np.array([1, 2, 3, 4, 5])
b = np.where(a == 5)

print(b)

where方法将会返回一个元祖

(array([4]),)

此外还将介绍一个搜索奇数和偶数的方法(数组全都默认使用最上面的a数组)

可见,简单的判断余数即可

c = np.where(a%2 == 0)
print(c)

d = np.where(a%2 == 1)
print(d)

返回:

(array([1, 3]),)
(array([0, 2, 4]),)

关于np.where方法到这里就结束啦

到此这篇关于Numpy中的数组搜索中np.where方法详细介绍的文章就介绍到这了,更多相关Numpy np.where 内容请搜索我们以前的文章或继续浏览下面的相关文章希望大家以后多多支持我们!

(0)

相关推荐

  • Python Numpy:找到list中的np.nan值方法

    这个问题源于在训练机器学习的一个模型时,使用训练数据时提示prepare的数据中存在np.nan 报错信息如下: ValueError: np.nan is an invalid document, expected byte or unicode string. 刚开始不知道为什么会有这个,后来发现是list中存在nan值 下面是找到nan值的方法: 简单找到: import numpy as np x = np.array([2,3,np.nan,5, np.nan,5,2,3]) for

  • Numpy中np.max的用法及np.maximum区别

    Numpy中np.max(即np.amax)的用法 >>> import numpy as np >>> help(np.max) 当遇到一个不认识的函数,我们就需要查看一下帮助文档 np.max与np.amax是同名函数 amax(a, axis=None, out=None, keepdims=<no value>, initial=<no value>, where=<no value>) Return the maximum

  • numpy:np.newaxis 实现将行向量转换成列向量

    np.newaxis 新增一个轴 如何将数组[0,1,2]转换成列向量 用ndarray[: , np.newaxis] 代码实质就是将原本的(0,1,2)移到行上,然后新增一列 其实可以更简单 ndarray.shape=(3,1) >> x = np.arange(3) >> x array([0, 1, 2]) >> x[:, np.newaxis] array([[0], [1], [2]]) >> x[:, None] array([[0], [1

  • 浅谈numpy中np.array()与np.asarray的区别以及.tolist

    array和asarray都可以将结构数据转化为ndarray,但是主要区别就是当数据源是ndarray时,array仍然会copy出一个副本,占用新的内存,但asarray不会. 1.输入为列表时 a=[[1,2,3],[4,5,6],[7,8,9]] b=np.array(a) c=np.asarray(a) a[2]=1 print(a) print(b) print(c) 从中我们可以看出np.array与np.asarray功能是一样的,都是将输入转为矩阵格式.当输入是列表的时候,更改

  • 关于numpy中np.nonzero()函数用法的详解

    np.nonzero函数是numpy中用于得到数组array中非零元素的位置(数组索引)的函数.一般来说,通过help(np.nonzero)能够查看到该函数的解析与例程.但是,由于例程为英文缩写,阅读起来还是很费劲,因此,本文将其英文解释翻译成中文,便于理解. 解释 nonzero(a) 返回数组a中非零元素的索引值数组. (1)只有a中非零元素才会有索引值,那些零值元素没有索引值: (2)返回的索引值数组是一个2维tuple数组,该tuple数组中包含一维的array数组.其中,一维arra

  • Numpy中np.random.rand()和np.random.randn() 用法和区别详解

    numpy.random.rand(d0, d1, -, dn)的随机样本位于[0, 1)中:本函数可以返回一个或一组服从**"0~1"均匀分布**的随机样本值. numpy.random.randn(d0, d1, -, dn)是从标准正态分布中返回一个或多个样本值. 1. np.random.rand() 语法: np.random.rand(d0,d1,d2--dn) 注:使用方法与np.random.randn()函数相同 作用: 通过本函数可以返回一个或一组服从"0

  • numpy给array增加维度np.newaxis的实例

    如下所示: a[:, np.newaxis] # 给a最外层中括号中的每一个元素加[] a[np.newaxis, :] # 给a最外层中括号中所有元素加[] 以上这篇numpy给array增加维度np.newaxis的实例就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持我们.

  • python numpy库np.percentile用法说明

    在python中计算一个多维数组的任意百分比分位数,此处的百分位是从小到大排列,只需用np.percentile即可-- a = range(1,101) #求取a数列第90%分位的数值 np.percentile(a, 90) Out[5]: 90.10000000000001 a = range(101,1,-1) #百分位是从小到大排列 np.percentile(a, 90) Out[7]: 91.10000000000001 详看官方文档 numpy.percentile Parame

  • numpy基础教程之np.linalg

    前言 numpy.linalg模块包含线性代数的函数.使用这个模块,可以计算逆矩阵.求特征值.解线性方程组以及求解行列式等.本文讲给大家介绍关于numpy基础之 np.linalg的相关内容,下面话不多说了,来一起看看详细的介绍吧 (1)np.linalg.inv():矩阵求逆 (2)np.linalg.det():矩阵求行列式(标量) np.linalg.norm 顾名思义,linalg=linear+algebra linalg=linear+algebra\mathrm{linalg=li

  • numpy np.newaxis 的实用分享

    如下所示: >> type(np.newaxis) NoneType >> np.newaxis == None True np.newaxis 在使用和功能上等价于 None,其实就是 None 的一个别名. 1. np.newaxis 的实用 >> x = np.arange(3) >> x array([0, 1, 2]) >> x.shape (3,) >> x[:, np.newaxis] array([[0], [1],

  • python中numpy.zeros(np.zeros)的使用方法

    翻译: 用法:zeros(shape, dtype=float, order='C') 返回:返回来一个给定形状和类型的用0填充的数组: 参数:shape:形状 dtype:数据类型,可选参数,默认numpy.float64 dtype类型: t ,位域,如t4代表4位 b,布尔值,true or false i,整数,如i8(64位) u,无符号整数,u8(64位) f,浮点数,f8(64位) c,浮点负数, o,对象, s,a,字符串,s24 u,unicode,u24 order:可选参数

随机推荐