详解基于Facecognition+Opencv快速搭建人脸识别及跟踪应用

人脸识别技术已经相当成熟,面对满大街的人脸识别应用,像单位门禁、刷脸打卡、App解锁、刷脸支付、口罩检测........

作为一个图像处理的爱好者,怎能放过人脸识别这一环呢!调研开搞,发现了超实用的Facecognition!现在和大家分享下~~

Facecognition人脸识别原理大体可分为:

1、通过hog算子定位人脸,也可以用cnn模型,但本文没试过;

2、Dlib有专门的函数和模型,实现人脸68个特征点的定位。通过图像的几何变换(仿射、旋转、缩放),使各个特征点对齐(将眼睛、嘴等部位移到相同位置);

3、训练一个神经网络,将输入的脸部图像生成为128维的预测值。训练的大致过程为:将同一人的两张不同照片和另一人的照片一起喂入神经网络,不断迭代训练,使同一人的两张照片编码后的预测值接近,不同人的照片预测值拉远;

4、将陌生人脸预测为128维的向量,与人脸库中的数据进行比对,找出阈值范围内欧氏距离最小的人脸,完成识别。

1 开发环境

PyCharm: PyCharm Community Edition 2020.3.2 x64

Python:Python 3.8.7

Opencv:opencv-python 4.5.1.48

Facecognition:1.3.0

Dlb:dlb 0.5.0

2 环境搭建

本文不做PyCharm和Python安装,这个自己搞不定,就别玩了~

pip install opencv-python
pip install face-recognition
pip install face-recognition-models
pip install dlb

3 打造自己的人脸库

通过opencv、facecogniton定位人脸并保存人脸头像,生成人脸数据集,代码如下:

import face_recognition
import cv2
import os

def builddataset():
  Video_face = cv2.VideoCapture(0)
  num=0
  while True:
    flag, frame = Video_face.read();
    if flag:
      cv2.imshow('frame', frame)
      cv2.waitKey(2)
    else:
      break
    face_locations = face_recognition.face_locations(frame)
    if face_locations:
      x_face = frame[face_locations[0][0]-50:face_locations[0][2]+50, face_locations[0][3]-50:face_locations[0][1]+50];
      #x_face = cv2.resize(x_face, dsize=(200, 200));
      bo_photo = cv2.imwrite("%s\%d.jpg" % ("traindataset/ylb", num), x_face);
      print("保存成功:%d" % num)
      num=num+1
    else:
      print("****未检查到头像****")

  Video_face.release()

if __name__ == '__main__':
  builddataset();
  pass

4、模型训练与保存

通过数据集进行训练,得到人脸识别码,以numpy数据形式保存(人脸识别码)模型

 def __init__(self, trainpath,labelname,modelpath, predictpath):
    self.trainpath = trainpath
    self.labelname = labelname
    self.modelpath = modelpath
    self.predictpath = predictpath

  # no doc
  def train(self, trainpath, modelpath):
    encodings = []
    dirs = os.listdir(trainpath)
    for k,dir in enumerate(dirs):
      filelist = os.listdir(trainpath+'/'+dir)
      for i in range(0, len(filelist)):
        imgname = trainpath + '/'+dir+'/%d.jpg' % (i)
        picture_of_me = face_recognition.load_image_file(imgname)
        face_locations = face_recognition.face_locations(picture_of_me)
        if face_locations:
          print(face_locations)
          my_face_encoding = face_recognition.face_encodings(picture_of_me,
                    face_locations)[0]
          encodings.append(my_face_encoding)
    if encodings:
      numpy.save(modelpath, encodings)
      print(len(encodings))
      print("model train is sucess")
    else:
      print("model train is failed")

5、人脸识别及跟踪

通过opencv启动摄像头并获取视频,加载训练好模型完成识别及跟踪,为避免视频卡顿设置了隔帧处理。

  def predicvideo(self,names,model):
    Video_face = cv2.VideoCapture(0)
    num=0
    recongnition=[]
    unknown_face_locations=[]
    while True:
      flag, frame = Video_face.read();
      frame = cv2.flip(frame, 1) # 镜像操作
      num=num+1
      if flag:
        self.predictpeople(num, recongnition,unknown_face_locations,frame, names, encodings)
      else:
        break
    Video_face.release()

  def predictpeople(self, condition,recongnition,unknown_face_locations,unknown_picture,labels,encodings):
    if condition%5==0:
      face_locations = face_recognition.face_locations(unknown_picture)
      unknown_face_encoding = face_recognition.face_encodings(unknown_picture,face_locations)
      unknown_face_locations.clear()
      recongnition.clear()
      for index, value in enumerate(unknown_face_encoding):
        unknown_face_locations.append(face_locations[index])
        results = face_recognition.compare_faces(encodings, value, 0.4)
        splitresult = numpy.array_split(results, len(labels))
        trueNum=[]
        a1 = ''
        for item in splitresult:
          number = numpy.sum(item)
          trueNum.append(number)
        if numpy.max(trueNum) > 0:
          id = numpy.argsort(trueNum)[-1]
          a1 = labels[id]
          cv2.rectangle(unknown_picture,
                 pt1=(unknown_face_locations[index][1], unknown_face_locations[index][0]),
                 pt2=(unknown_face_locations[index][3], unknown_face_locations[index][2]),
                 color=[0, 0, 255],
                 thickness=2);
          cv2.putText(unknown_picture, a1,
                (unknown_face_locations[index][1], unknown_face_locations[index][0]),
                cv2.FONT_ITALIC, 1, [0, 0, 255], 2);
        else:
          a1 = "unkown"
          cv2.rectangle(unknown_picture,
                 pt1=(unknown_face_locations[index][1], unknown_face_locations[index][0]),
                 pt2=(unknown_face_locations[index][3], unknown_face_locations[index][2]),
                 color=[0, 0, 255],
                 thickness=2);
          cv2.putText(unknown_picture, a1,
                (unknown_face_locations[index][1], unknown_face_locations[index][0]),
                cv2.FONT_ITALIC, 1, [0, 0, 255], 2);
        recongnition.append(a1)
    else:
      self.drawRect(unknown_picture,recongnition,unknown_face_locations)
    cv2.imshow('face', unknown_picture)
    cv2.waitKey(1)

6、结语

通过opencv启动摄像头并获取实时视频,为避免过度卡顿采取隔帧处理;利用Facecognition实现模型的训练、保存、识别,二者结合实现了实时视频人脸的多人识别及跟踪,希望对大家有所帮助~!

到此这篇关于详解基于Facecognition+Opencv快速搭建人脸识别及跟踪应用的文章就介绍到这了,更多相关Facecognition+Opencv人脸识别 内容请搜索我们以前的文章或继续浏览下面的相关文章希望大家以后多多支持我们!

(0)

相关推荐

  • OpenCV实现人脸识别简单程序

    本文实例为大家分享了OpenCV实现人脸识别程序的具体代码,供大家参考,具体内容如下 //Haar特征检测,人脸识别算法,是用xml作为训练后的分类器做的 #include<opencv2\opencv.hpp> #include<cstdio> #include<cstdlib> #include<Windows.h> using namespace std; int main() { //加载Haar特征检测分类器 // haarcascade_fron

  • Opencv LBPH人脸识别算法详解

    简要:  LBPH(Local Binary PatternsHistograms)局部二进制编码直方图,建立在LBPH基础之上的人脸识别法基本思想如下:首先以每个像素为中心,判断与周围像素灰度值大小关系,对其进行二进制编码,从而获得整幅图像的LBP编码图像:再将LBP图像分为个区域,获取每个区域的LBP编码直方图,继而得到整幅图像的LBP编码直方图,通过比较不同人脸图像LBP编码直方图达到人脸识别的目的,其优点是不会受到光照.缩放.旋转和平移的影响. #include<opencv2\open

  • python实现图像,视频人脸识别(opencv版)

    图片人脸识别 import cv2 filepath = "img/xingye-1.png" img = cv2.imread(filepath) # 读取图片 gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) # 转换灰色 # OpenCV人脸识别分类器 classifier = cv2.CascadeClassifier( "C:\Python36\Lib\site-packages\opencv-master\data\haar

  • Opencv EigenFace人脸识别算法详解

    简要: EigenFace是基于PCA降维的人脸识别算法,PCA是使整体数据降维后的方差最大,没有考虑降维后类间的变化. 它是将图像每一个像素当作一维特征,然后用SVM或其它机器学习算法进行训练.但这样维数太多,根本无法计算.我这里用的是ORL人脸数据库,英国剑桥实验室拍摄的,有40位志愿者的人脸,在不同表情不同光照下每位志愿者拍摄10张,共有400张图片,大小为112*92,所以如果把每个像素当做特征拿来训练的话,一张人脸就有10304维特征,这么高维的数据根本无法处理.所以需要先对数据进行降

  • OpenCV Java实现人脸识别和裁剪功能

    本文实例为大家分享了OpenCV Java实现人脸识别和裁剪的具体代码,供大家参考,具体内容如下 安装及配置 1.首先安装OpenCV,地址 这里我下载的是Windows版的3.4.5 然后安装即可-- 2.Eclipse配置OpenCV Window->Preferences->Java->User Libraries New输入你的Libraries名 这里我的安装目录是D:\OpenCV,所以是: 然后引入dll,我是64位机子,所以是: Ok,下面创建Java项目做Java与Op

  • OpenCV+face++实现实时人脸识别解锁功能

    本文实例为大家分享了OpenCV+face++实现实时人脸识别解锁功能的具体代码,供大家参考,具体内容如下 1.背景 最近做一个小东西,需要登录功能,一开始做的就是普通的密码登录功能,但是之前看到过python可以做人脸识别,所以我就开了下脑洞,能不能实现一个自己的刷脸解锁功能. 2.知识储备 python基础语法 opencv face++文档 requests库 3.基本思路 准备一张你想要被识别出的人脸照片,后面刷脸就是按照这张照片来识别,如果和照片中是同一个人就解锁,刷脸就是打开摄像头获

  • opencv实现简单人脸识别

    对于opencv 它提供了许多已经练习好的模型可供使用,我们需要通过他们来进行人脸识别 参考了网上许多资料 假设你已经配好了开发环境 ,在我之前的博客中由开发环境的配置. 项目代码结构: dataSet : 存储训练用的图片,他由data_gen生成,当然也可以修改代码由其他方式生成 haarcascade_frontalface_alt.xml  . haarcascade_frontalface_default.xml: 用于人脸检测的haar分类器,网上普遍说第一个效果更好,第二个运行速度

  • python基于opencv实现人脸识别

    将opencv中haarcascade_frontalface_default.xml文件下载到本地,我们调用它辅助进行人脸识别. 识别图像中的人脸 #coding:utf-8 import cv2 as cv # 读取原始图像 img = cv.imread('face.png') # 调用熟悉的人脸分类器 识别特征类型 # 人脸 - haarcascade_frontalface_default.xml # 人眼 - haarcascade_eye.xml # 微笑 - haarcascad

  • OpenCV + MFC实现简单人脸识别

    用VS2010 + OpenCV 2.4.9 实现简单人脸识别 首先放效果图(为了防止辣眼睛,后期处理了下): 首先声明,我是在参考其他文章的基础上实现的. 切入正题: 1 设置控件 首先新建一个基于Dialog的MFC程序的工程,工程名为FaceDetect : 然后在IDD_FACEDETECT_DIALOG对话框中添加一个Picture 控件,ID命名为:IDC_PICTURE:添加一个Button控件,Caption命名为 "检测",ID命名为IDC_START,将原来自动生成

  • 详解基于Facecognition+Opencv快速搭建人脸识别及跟踪应用

    人脸识别技术已经相当成熟,面对满大街的人脸识别应用,像单位门禁.刷脸打卡.App解锁.刷脸支付.口罩检测........ 作为一个图像处理的爱好者,怎能放过人脸识别这一环呢!调研开搞,发现了超实用的Facecognition!现在和大家分享下~~ Facecognition人脸识别原理大体可分为: 1.通过hog算子定位人脸,也可以用cnn模型,但本文没试过: 2.Dlib有专门的函数和模型,实现人脸68个特征点的定位.通过图像的几何变换(仿射.旋转.缩放),使各个特征点对齐(将眼睛.嘴等部位移

  • 详解如何用OpenCV + Python 实现人脸识别

    下午的时候,配好了OpenCV的Python环境,OpenCV的Python环境搭建.于是迫不及待的想体验一下opencv的人脸识别,如下文. 必备知识 Haar-like 通俗的来讲,就是作为人脸特征即可. Haar特征值反映了图像的灰度变化情况.例如:脸部的一些特征能由矩形特征简单的描述,如:眼睛要比脸颊颜色要深,鼻梁两侧比鼻梁颜色要深,嘴巴比周围颜色要深等. opencv api 要想使用opencv,就必须先知道其能干什么,怎么做.于是API的重要性便体现出来了.就本例而言,使用到的函数

  • 详解使用Nuxt.js快速搭建服务端渲染(SSR)应用

    安装 nuxt.js Nuxt.js 官方提功了两种方法来进行项目的初始化,一种是使用Nuxt.js团队的脚手架工具 create-nuxt-app ,一种是根据自己的需求自由配置 使用脚手架适合新手,对 nodejs 后台框架有所了解:按照自己需求自由配置,需要对如何配置 webpack 以及 nodejs 后台框架有所了解. 两种方式比较下就是原生和插件的区别. 使用脚手架安装 需要有 nodejs 或者yarn环境,推荐使用 vscode 自带的控制台输入命令行命令进行操作 在有了环境之后

  • Python基于Opencv来快速实现人脸识别过程详解(完整版)

    前言 随着人工智能的日益火热,计算机视觉领域发展迅速,尤其在人脸识别或物体检测方向更为广泛,今天就为大家带来最基础的人脸识别基础,从一个个函数开始走进这个奥妙的世界. 首先看一下本实验需要的数据集,为了简便我们只进行两个人的识别,选取了beyond乐队的主唱黄家驹和贝斯手黄家强,这哥俩长得有几分神似,这也是对人脸识别的一个考验: 两个文件夹,一个为训练数据集,一个为测试数据集,训练数据集中有两个文件夹0和1,之前看一些资料有说这里要遵循"slabel"命名规则,但后面处理起来比较麻烦,

  • 详解基于Scrapy的IP代理池搭建

    一.为什么要搭建爬虫代理池 在众多的网站防爬措施中,有一种是根据ip的访问频率进行限制,即在某一时间段内,当某个ip的访问次数达到一定的阀值时,该ip就会被拉黑.在一段时间内禁止访问. 应对的方法有两种: 1. 降低爬虫的爬取频率,避免IP被限制访问,缺点显而易见:会大大降低爬取的效率. 2. 搭建一个IP代理池,使用不同的IP轮流进行爬取. 二.搭建思路 1.从代理网站(如:西刺代理.快代理.云代理.无忧代理)爬取代理IP: 2.验证代理IP的可用性(使用代理IP去请求指定URL,根据响应验证

  • 基于vue.js快速搭建图书管理平台

    Vue.js是当下很火的一个JavaScript MVVM(Model-View-ViewModel)库,它是以数据驱动和组件化的思想构建的.相比于Angular.js,Vue.js提供了更加简洁.更易于理解的API,使得我们能够快速地上手并使用Vue.js. 上一期简单讲解了vue的基本语法,这一次我们做一个小项目,搭建一个简单的图书管理平台,能够让我们更深刻的理解这门语言的妙用. 1.DEMO样式 首先我们需要搭建一个简单的demo样式,推荐大家使用bootstrap,可以很快的搭建出一个清

  • 详解基于IDEA2020.1的JAVA代码提示插件开发例子

    之前因为项目组有自己的代码规范,为了约束平时的开发规范,于是基于2019.1.3版本开发了一个代码提示的插件.但是在把IDEA切换到2020.1版本的时候,却发现疯狂报错,但是网上关于IDEA插件开发的相关文章还是不够多,只能自己解决.于是根据官方的SDK文档,使用Gradle重新构建了一下项目,把代码拉了过来.下文会根据2020.1版本简单开发一个代码异常的提示插件,把容易踩坑的地方提示一下. 1.首先先根据IDEA插件开发官方文档,用Gradle新建一个project 选中file -> n

  • 详解基于python的图像Gabor变换及特征提取

    1.前言 在深度学习出来之前,图像识别领域北有"Gabor帮主",南有"SIFT慕容小哥".目前,深度学习技术可以利用CNN网络和大数据样本搞事情,从而取替"Gabor帮主"和"SIFT慕容小哥"的江湖地位.但,在没有大数据和算力支撑的"乡村小镇"地带,或是对付"刁民小辈","Gabor帮主"可以大显身手,具有不可撼动的地位.IT武林中,有基于C++和OpenCV,或

  • 基于Python搭建人脸识别考勤系统

    目录 介绍 人脸识别的实际应用 构建人脸识别系统的步骤 安装库 导入库 加载图像 查找人脸位置并绘制边界框 为人脸识别训练图像 构建人脸识别系统 人脸识别系统面临的挑战 结论 介绍 在本文中,你将学习如何使用 Python 构建人脸识别系统.人脸识别比人脸检测更进一步.在人脸检测中,我们只检测人脸在图像中的位置,但在人脸识别中,我们制作了一个可以识别人的系统. "人脸识别是验证或识别图片或视频中的人的挑战.大型科技巨头仍在努力打造更快.更准确的人脸识别模型." 人脸识别的实际应用 人脸

  • 详解基于pycharm的requests库使用教程

    目录 requests库安装和导入 requests库的get请求 requests库的post请求 requests库的代理 requests库的cookie 自动识别验证码 requests库安装和导入 第一步:cmd打开命令行,使用如下命令安装requests库. pip install requests 由于我的安装过了,所以如下: 如果提示你pip版本需要更新,按照提示的指令输入即可更新. 第二步:cmd使用如下命令,验证requests库安装完成. pip list 第三步:在pyc

随机推荐