Python Pytorch深度学习之核心小结

目录
  • 一、Numpy实现网络
  • 二、Pytorch:Tensor
  • 三、自动求导
    • 1、PyTorch:Tensor和auto_grad
  • 总结

Pytorch的核心是两个主要特征:

1.一个n维tensor,类似于numpy,但是tensor可以在GPU上运行

2.搭建和训练神经网络时的自动微分/求导机制

一、Numpy实现网络

在总结Tensor之前,先使用numpy实现网络。numpy提供了一个n维数组对象,以及许多用于操作这些数组的函数。

import numpy as np
# n是批量大小,d_in是输入维度
# h是隐藏的维度,d_out是输出维度
n,d_in,h,d_out=64,1000,100,10
# 创建随机输入和输出数据
x=np.random.randn(n,d_in)
y=np.random.randn(n,d_out)
# 随机初始化权重
w1=np.random.randn(d_in,h)
w2=np.random.randn(h,d_out)
learning_rate=1e-6
for i in range(500):
    #前向传播,计算预测值y
    h=x.dot(w1)
    h_relu=np.maximum(h,0)
    y_pred=h_relu.dot(w2)
    #计算损失值
    loss=np.square(y_pred-y).sum()
    print(i,loss)
    #反向传播,计算w1和w2对loss的梯度
    grad_y_pred=2.0*(y_pred-y)
    grad_w2=h_relu.T.dot(grad_y_pred)
    grad_h_relu=grad_y_pred.dot(w2.T)
    grad_h=grad_h_relu.copy()
    grad_h[h<0]=0
    grad_w1=x.T.dot(grad_h)
    # 更新权重
    w1-=learning_rate*grad_w1
    w2-=learning_rate*grad_w2

运行结果

可以明显看到loss逐渐减小。

此处解释一下上次发的一篇中,有猿友对其中的loss有疑问,其实我认为:损失值loss只是为了检测网络的学习情况(至少我在这几篇中的loss就只有这个功能),在前面那一篇中迭代没有清零,所以损失值是一直增加的,如果每次迭代以后置零,效果和现在是一样的。至于其中的除以2000只是为了便于显示,可以一目了然大小的变化所以那么写的,所以可以自己定义合理的写法。(仅个人的理解和看法)

二、Pytorch:Tensor

Tensor 在概念上和numpy中的array相同,tensor也是一个n维数组,pytorch提供了许多函数用于操作这些张量。所有使用numpy执行的计算都可以使用pytorch的tensor完成。与numpy不同的是pytorch可以利用GPU加速数据的计算。实现和numpy相同的过程

#%%tensor实现网络
import torch
dtype=torch.float
device=torch.device('cpu')
# device=torch.device('cuda:0')#由GPU的可爱们享受吧,我不配,实验室没有给我高配置的电脑
# n是批量大小,d_in是输入维度
# h是隐藏的维度,d_out是输出维度
n,d_in,h,d_out=64,1000,100,10
# 创建随机输入和输出数据
x=torch.randn(n,d_in,device=device,dtype=dtype)
y=torch.randn(n,d_out,device=device,dtype=dtype)
# 随机初始化权重
w1=torch.randn(d_in,h,device=device,dtype=dtype)
w2=torch.randn(h,d_out,device=device,dtype=dtype)
learning_rate=1e-6
for i in range(500):
    #前向传播,计算预测值y
    h=x.mm(w1)
    h_relu=h.clamp(min=0)
    y_pred=h_relu.mm(w2)
    #计算损失值
    loss=(y_pred-y).pow(2).sum().item()
    print(i,loss)
    #反向传播,计算w1和w2对loss的梯度
    grad_y_pred=2.0*(y_pred-y)
    grad_w2=h_relu.t().mm(grad_y_pred)
    grad_h_relu=grad_y_pred.mm(w2.T)
    grad_h=grad_h_relu.clone()
    grad_h[h<0]=0
    grad_w1=x.t().mm(grad_h)
    # 更新权重
    w1-=learning_rate*grad_w1
    w2-=learning_rate*grad_w2

运行结果

三、自动求导

1、PyTorch:Tensor和auto_grad

上面两个例子中,我们自己手动实现了神经网络的向前和向后传递。手动实现反向传递对小型双层网络来说没有问题,但是对于大型复杂的网络来说就会变得很繁琐。

但是Pytorch中的autograd包提供了自动微分可以用来计算神经网络中的后向传递。当使用autograd时候,网络前后想传播将定义一个计算图,图中的节点是tensor,边是函数,这些函数是输出tensor到输入tensor的映射。这张计算图使得在网络中反向传播时梯度的计算十分简单。

如果我们想要计算某些tensor的梯度,我们只需要在建立这个tensor时加上一句:requires_grad=True。这个tensor上的任何Pytorch的操作都将构造一个计算图,从而允许我们在图中执行反向传播。如果这个tensor的requires_grad=True,那么反向传播之后x.grad将会是另外一个张量,其为关于某个标量值得梯度。

有时不需要构建这样的计算图,例如:在训练神经网络的过程中,通常不希望通过权重更新步骤进行反向传播。在这种情况下,可以使用torch.no_grad()上下文管理器来防止构造计算图——————(其实这些在之前的文章中都有详细的写过[我在这里],就不再赘述了)

下面例子中,使用Pytorch的Tensor和autograd来实现两层的神经网络,不需要再手动执行网络的反向传播:

#%%使用tensor和auto_grad实现两层神经网络
import torch
dtype=torch.float
device=torch.device('cpu')
# device=torch.device('cuda:0')#由GPU的可爱们享受吧,我不配,实验室没有给我高配置的电脑
# n是批量大小,d_in是输入维度
# h是隐藏的维度,d_out是输出维度
n,d_in,h,d_out=64,1000,100,10
# 创建随机输入和输出数据,requires_grad默认设置为False,表示不需要后期微分操作
x=torch.randn(n,d_in,device=device,dtype=dtype)
y=torch.randn(n,d_out,device=device,dtype=dtype)
# 随机初始化权重,requires_grad默认设置为True,表示想要计算其微分
w1=torch.randn(d_in,h,device=device,dtype=dtype,requires_grad=True)
w2=torch.randn(h,d_out,device=device,dtype=dtype,requires_grad=True)
learning_rate=1e-6
for i in range(500):
    #前向传播,使用tensor上的操作计算预测值y
    # 由于w1和w2的requirea_grad=True,涉及这两个张量的操作可以使pytorch构建计算图
    #即允许自动计算梯度,由于不需要手动实现反向传播,所以不需要保存中间值
    y_pred=x.mm(w1).clamp(min=0).mm(w2)

    #使用tensor中的操作计算损失值,loss.item()得到loss这个张量对应的数值
    loss=(y_pred-y).pow(2).sum()
    print(i,loss.item())
    #使用autograd计算反向传播,这个调用将计算loss对所有的requires_grad=True的tensor梯度,
    #调用之后,w1.grad和w2.grad将分别是loss对w1和w2的梯度张量
    loss.backward()
    #使用梯度下降更新权重,只想对w1和w2的值进行原地改变:不想更新构建计算图
    #所以使用torch.no_grad()阻止pytorch更新构建计算图
    with torch.no_grad():
        w1-=learning_rate*w1.grad
        w2-=learning_rate*w2.grad
    #反向传播后手动将梯度置零
    w1.grad.zero_()
    w2.grad.zero_()

运行结果

总结

本篇文章就到这里了,希望能够给你带来帮助,也希望您能够多多关注我们的更多内容!

(0)

相关推荐

  • Python Pytorch深度学习之图像分类器

    目录 一.简介 二.数据集 三.训练一个图像分类器 1.导入package吧 2.归一化处理+贴标签吧 3.先来康康训练集中的照片吧 4.定义一个神经网络吧 5.定义一个损失函数和优化器吧 6.训练网络吧 7.在测试集上测试一下网络吧 8.分别查看一下训练效果吧 总结 一.简介 通常,当处理图像.文本.语音或视频数据时,可以使用标准Python将数据加载到numpy数组格式,然后将这个数组转换成torch.*Tensor 对于图像,可以用Pillow,OpenCV 对于语音,可以用scipy,l

  • Python Pytorch深度学习之自动微分

    目录 一.简介 二.TENSOR 三.梯度 四.Example--雅克比向量积 总结 一.简介 antograd包是Pytorch中所有神经网络的核心.autograd为Tensor上的所有操作提供自动微分,它是一个由运行定义的框架,这意味着以代码运行方式定义后向传播,并且每一次迭代都可能不同 二.TENSOR torch.Tensor是包的核心. 1.如果将属性.requires_grad设置为True,则会开始跟踪针对tensor的所有操作. 2.完成计算之后,可以调用backward()来

  • Python Pytorch深度学习之神经网络

    目录 一.简介 二.神经网络训练过程 2.通过调用net.parameters()返回模型可训练的参数 3.迭代整个输入 4.调用反向传播 5.计算损失值 6.反向传播梯度 7.更新神经网络参数 总结 一.简介 神经网络可以通过torch.nn包构建,上一节已经对自动梯度有些了解,神经网络是基于自动梯度来定义一些模型.一个nn.Module包括层和一个方法,它会返回输出.例如:数字图片识别的网络: 上图是一个简单的前回馈神经网络,它接收输入,让输入一个接着一个通过一些层,最后给出输出. 二.神经

  • Python Pytorch深度学习之数据加载和处理

    目录 一.下载安装包 二.下载数据集 三.读取数据集 四.编写一个函数看看图像和landmark 五.数据集类 六.数据可视化 七.数据变换 1.Function_Rescale 2.Function_RandomCrop 3.Function_ToTensor 八.组合转换 九.迭代数据集 总结 一.下载安装包 packages: scikit-image:用于图像测IO和变换 pandas:方便进行csv解析 二.下载数据集 数据集说明:该数据集(我在这)是imagenet数据集标注为fac

  • Python Pytorch深度学习之Tensors张量

    目录 一.Tensor(张量) 二.操作 总结 环境:Anaconda自带的编译器--Spyder 最近才开使用conda,发现conda 就是 yyds,爱啦~ 一.Tensor(张量) import torch #构造一个5*3的空矩阵 x=torch.FloatTensor(5,3) print(x) # 构造随机初始化矩阵 x=torch.rand(5,3) print(x) # 构造一个矩阵全为0,而且数据类型为long x=torch.zeros(5,3,dtype=torch.lo

  • Python Pytorch深度学习之核心小结

    目录 一.Numpy实现网络 二.Pytorch:Tensor 三.自动求导 1.PyTorch:Tensor和auto_grad 总结 Pytorch的核心是两个主要特征: 1.一个n维tensor,类似于numpy,但是tensor可以在GPU上运行 2.搭建和训练神经网络时的自动微分/求导机制 一.Numpy实现网络 在总结Tensor之前,先使用numpy实现网络.numpy提供了一个n维数组对象,以及许多用于操作这些数组的函数. import numpy as np # n是批量大小,

  • Pytorch深度学习之实现病虫害图像分类

    目录 一.pytorch框架 1.1.概念 1.2.机器学习与深度学习的区别 1.3.在python中导入pytorch成功截图 二.数据集 三.代码复现 3.1.导入第三方库 3.2.CNN代码 3.3.测试代码 四.训练结果 4.1.LOSS损失函数 4.2. ACC 4.3.单张图片识别准确率 四.小结 一.pytorch框架 1.1.概念 PyTorch是一个开源的Python机器学习库,基于Torch,用于自然语言处理等应用程序. 2017年1月,由Facebook人工智能研究院(FA

  • pyTorch深度学习softmax实现解析

    目录 用PyTorch实现linear模型 模拟数据集 定义模型 加载数据集 optimizer 模型训练 softmax回归模型 Fashion-MNIST cross_entropy 模型的实现 利用PyTorch简易实现softmax 用PyTorch实现linear模型 模拟数据集 num_inputs = 2 #feature number num_examples = 1000 #训练样本个数 true_w = torch.tensor([[2],[-3.4]]) #真实的权重值 t

  • PyTorch深度学习模型的保存和加载流程详解

    一.模型参数的保存和加载 torch.save(module.state_dict(), path):使用module.state_dict()函数获取各层已经训练好的参数和缓冲区,然后将参数和缓冲区保存到path所指定的文件存放路径(常用文件格式为.pt..pth或.pkl). torch.nn.Module.load_state_dict(state_dict):从state_dict中加载参数和缓冲区到Module及其子类中 . torch.nn.Module.state_dict()函数

  • 如何在conda虚拟环境中配置cuda+cudnn+pytorch深度学习环境

    首先,我们要明确,我们是要在虚拟环境中安装cuda和cuDNN!!!只需要在虚拟环境中安装就可以了. 下面的操作默认你安装好了python 一.conda创建并激活虚拟环境 前提:确定你安装好了anaconda并配置好了环境变量,如果没有,网上有很多详细的配置教程,请自行学习 在cmd命令提示符中输入conda命令查看anaconda 如果显示和上图相同,那么可以继续向下看 1.进入anaconda的base环境 方法1 在cmd命令提示符中输入如下命令 activate 方法2 直接在搜索栏里

随机推荐