python正则表达式最详解
目录
- 一、正则表达式–元字符
- 1. 数量词
- 2. 字符匹配
- 3. 边界匹配
- 4. 组
- 5. 匹配模式参数
- 二、方法
- re.findall
- re.match
- group匹配对象
- re.search
- re.compile
- 三、检索和替换
- re.sub 替换字符串
- 总结
一、正则表达式–元字符
re 模块使 Python 语言拥有全部的正则表达式功能
1. 数量词
# 提取大小写字母混合的单词 import re a = 'Excel 12345Word23456PPT12Lr' r = re.findall('[a-zA-Z]{3,5}',a) # 提取字母的数量3个到5个 print(r) # ['Excel', 'Word', 'PPT'] # 贪婪 与 非贪婪 【Python默认使用贪婪模式】 # 贪婪:'[a-zA-Z]{3,5}' # 非贪婪:'[a-zA-Z]{3,5}?' 或 '[a-zA-Z]{3}' # 建议使用后者,不要使用?号,否则你会与下面的?号混淆 # 匹配0次或无限多次 *号,*号前面的字符出现0次或无限次 import re a = 'exce0excell3excel3' r = re.findall('excel*',a) r = re.findall('excel.*',a) # ['excell3excel3'] # excel 没有l 有很多l都可以匹配出来 print(r) # ['exce', 'excell', 'excel'] # 匹配1次或者无限多次 +号,+号前面的字符至少出现1次 import re a = 'exce0excell3excel3' r = re.findall('excel+',a) print(r) # ['excell', 'excel'] # 匹配0次或1次 ?号,?号经常用来去重复 import re a = 'exce0excell3excel3' r = re.findall('excel?',a) print(r) # ['exce', 'excel', 'excel']
2. 字符匹配
line = 'xyz,xcz.xfc.xdz,xaz,xez,xec' r = re.findall('x[de]z', line) # pattern 是x开始,z结束,含d或e print(r) # ['xdz', 'xez'] r = re.findall('x[^de]z', line) # pattern 是x开始,z结束,不是含d或e print(r) # ['xyz', 'xcz', 'xaz']
# \w 可以提取中文,英文,数字和下划线,不能提取特殊字符 import re a = 'Excel 12345Word\n23456_PPT12lr' r = re.findall('\w',a) print(r) # ['E', 'x', 'c', 'e', 'l', '1', '2', '3', '4', '5', 'W', 'o', 'r', 'd', '2', '3', '4', '5', '6', '_', 'P', 'P', 'T', '1', '2', 'l', 'r'] # \W 提取特殊字符,空格 \n \t import re a = 'Excel 12345Word\n23456_PPT12lr' r = re.findall('\W',a) print(r) # [' ', '\n']
3. 边界匹配
# 限制电话号码的位置必需是8-11位才能提取 import re tel = '13811115888' r = re.findall('^\d{8,11}$',tel) print(r) # ['13811115888']
4. 组
# 将abc打成一个组,{2}指的是重复几次,匹配abcabc import re a = 'abcabcabcxyzabcabcxyzabc' r = re.findall('(abc){2}',a) # 与 # ['abc', 'abc'] print(r) r = re.findall('(abc){3}',a) # ['abc']
5. 匹配模式参数
# findall第三参数 re.I忽略大小写 import re a = 'abcFBIabcCIAabc' r = re.findall('fbi',a,re.I) print(r) # ['FBI'] # 多个模式之间用 | 连接在一起 import re a = 'abcFBI\nabcCIAabc' r = re.findall('fbi.{1}',a,re.I | re.S) # 匹配fbi然后匹配任意一个字符包括\n print(r) # ['FBI\n']
二、方法
re.findall
- 匹配出字符串中所有 与制定值相关的值
- 以列表的形式返回
- 未匹配则返回空列表
import re re.findall(pattern, string, flags=0) pattern.findall(string[ , pos[ , endpos]])
import re line = "111aaabbb222小呼噜奥利奥" r = re.findall('[0-9]',line) print(r) # ['1', '1', '1', '2', '2', '2']
re.match
- re.match 尝试从字符串的起始位置匹配一个模式
- 如果不是起始位置匹配成功的话,match()就返回none。
re.match(pattern, string, flags=0) # (标准,要匹配的,标志位)
print(re.match('www','www.xxxx.com')) print(re.match('www','www.xxxx.com').span()) print(re.match('com','www.xxxx.com'))
<re.Match object; span=(0, 3), match='www'> (0, 3) None
group匹配对象
import re a = 'life is short,i use python,i love python' r = re.search('life(.*)python(.*)python',a) print(r.group(0)) # 完整正则匹配 ,life is short,i use python,i love python print(r.group(1)) # 第1个分组之间的取值 is short,i use print(r.group(2)) # 第2个分组之间的取值 ,i love print(r.group(0,1,2)) # 以元组形式返回3个结果取值 ('life is short,i use python,i love python', ' is short,i use ', ',i love ') print(r.groups()) # 返回就是group(1)和group(2) (' is short,i use ', ',i love ')
import re # .* 表示任意匹配除换行符(\n、\r)之外的任何单个或多个字符 # (.*?) 表示"非贪婪"模式,只保存第一个匹配到的子串 # re.M 多行匹配,影响 ^ 和 $ # re.I 使匹配对大小写不敏感 line = "Cats are smarter than dogs" matchObj1 = re.match(r'(.*) are (.*?) .*', line, re.M|re.I) matchObj2 = re.match(r'(.*) smarter (.*?) .*', line, re.M|re.I) matchObj3 = re.match(r'(.*) than (.*)', line, re.M|re.I) print(matchObj1) print(matchObj2) print(matchObj3) # <re.Match object; span=(0, 26), match='Cats are smarter than dogs'> # <re.Match object; span=(0, 26), match='Cats are smarter than dogs'> # None if matchObj1: print ("matchObj1.group() : ", matchObj1.group()) print ("matchObj1.group(1) : ", matchObj1.group(1)) print ("matchObj1.group(2) : ", matchObj1.group(2)) else: print ("No match!!") if matchObj2: print ("matchObj2.group() : ", matchObj2.group()) print ("matchObj2.group(1) : ", matchObj2.group(1)) print ("matchObj2.group(2) : ", matchObj2.group(2)) else: print ("No match!!") if matchObj3: print ("matchObj3.group() : ", matchObj3.group()) print ("matchObj3.group(1) : ", matchObj3.group(1)) print ("matchObj3.group(2) : ", matchObj3.group(2)) else: print ("No match!!") # matchObj1.group() : Cats are smarter than dogs # matchObj1.group(1) : Cats # matchObj1.group(2) : smarter # matchObj2.group() : Cats are smarter than dogs # matchObj2.group(1) : Cats are # matchObj2.group(2) : than # matchObj3.group() : Cats are smarter than dogs # matchObj3.group(1) : Cats are smarter # matchObj3.group(2) : dogs
import re # 点 是匹配单个字符 # 星是前面的东西出现0次或无数次 # 点星就是任意字符出现0次或无数次 str = "a b a b" matchObj1 = re.match(r'a(.*)b', str, re.M|re.I) matchObj2 = re.match(r'a(.*?)b', str, re.M|re.I) print("matchObj1.group() : ", matchObj1.group()) print("matchObj2.group() : ", matchObj2.group()) # matchObj1.group() : a b a b # matchObj2.group() : a b
re.search
扫描整个字符串并返回第一个成功的匹配。
re.search(pattern, string, flags=0)
import re line = "cats are smarter than dogs" matchObj = re.match(r'dogs',line,re.M|re.I) matchObj1= re.search(r'dogs',line,re.M|re.I) matchObj2= re.match(r'(.*) dogs',line,re.M|re.I) if matchObj: print ("match --> matchObj.group() : ", matchObj.group()) else: print ("No match!!") if matchObj1: print ("match --> matchObj1.group() : ", matchObj1.group()) else: print ("No match!!") if matchObj2: print ("match --> matchObj2.group() : ", matchObj2.group()) else: print ("No match!!") # No match!! # match --> matchObj1.group() : dogs # match --> matchObj2.group() : cats are smarter than dogs
re.compile
- re.compile是将正则表达式转换为模式对象
- 这样可以更有效率匹配。使用compile转换一次之后,以后每次使用模式时就不用进行转换
三、检索和替换
re.sub 替换字符串
re.sub('被替换的','替换成的',a)
# 把FBI替换成BBQ import re a = 'abcFBIabcCIAabc' r = re.sub('FBI','BBQ',a) print(r) # 把FBI替换成BBQ,第4参数写1,证明只替换第一次,默认是0(无限替换) import re a = 'abcFBIabcFBIaFBICIAabc' r = re.sub('FBI','BBQ',a,1) print(r) # abcBBQabcCIAabc # abcBBQabcFBIaFBICIAabc
# 把函数当参数传到sub的列表里,实现把业务交给函数去处理,例如将FBI替换成$FBI$ import re a = 'abcFBIabcFBIaFBICIAabc' def 函数名(形参): 分段获取 = 形参.group() # group()在正则表达式中用于获取分段截获的字符串,获取到FBI return '$' + 分段获取 + '$' r = re.sub('FBI',函数名,a) print(r)
总结
本篇文章就到这里了,希望能够给你带来帮助,也希望您能够多多关注我们的更多内容!
赞 (0)