Python 如何读取.txt,.md等文本文件

看代码吧~

# example.md
1 2 3
4 5 6
7 8 9

>>> with open('example.md') as f:
        lines = f.readlines()
>>> lines
['1 2 3\n', '4 5 6\n', '7 8 9\n']
# 我们发现每一行后面都会有一个回车符,我们使用strip()函数消除它
>>> lines = [i.strip() for i in lines]
['1 2 3', '4 5 6', '7 8 9']
# 每个元素是一个string,但是我们需要读取的是文本数据,所以需要将string转化为int(or float)
>>> data = []
>>> for line in lines:
        data.append([int(i) for i in line.split(' ')])
[[1, 2, 3], [4, 5, 6], [7, 8, 9]]
# 最后可以把list转化为ndarray形式
>>> data = np.array(data)
>>> data
array([[1, 2, 3],
       [4, 5, 6],
       [7, 8, 9]])
# 把上述步骤写到一个函数里
>>> def read_file(file):
        """
        read .md or .txt format file
        :param file: .md or .txt format file
        :return: data
        """
        with open('example.md') as f:
            lines = f.readlines()
        data = []
        for line in lines:
            data.append([int(i) for i in line.strip().split(' ')])
        return np.array(data)
>>> data = read_file('example.md')
>>> data
array([[1, 2, 3],
       [4, 5, 6],
       [7, 8, 9]])

补充:python 各种获取md5的方式

看代码吧~

#使用python 库  求MD5
import hashlib
#求字符串MD5
md5 = hashlib.md5('字符串').hexdigest()
#求文件md5
file = open('文件','rb')
md5 = hashlib.md5(file.read())hexdigest()
file.close()

#python 利用mac/linex 终端命令求md5

def get_MD5(file_path):
    '''计算MD5'''
    files_md5 = os.popen('md5 %s' % file_path).read().strip()
    file_md5 = files_md5.replace('MD5 (%s) = ' % file_path, '')
    return file_md5

#如果是windows 系统 大概可以利用类似的方法 获取把  没做过测试

#当进行获取大量文件的md5的时候,建议使用 命令的方式获取,这样 运行速度会快很多

补充:Python中读取txt文件的三种可行办法

DataTest.txt中的文件内容,文件最后尽量不要留空行,否则有的时候会出现error

1,2,3
4,5,6
7,8,9

第一种方式:使用 csv.reader()读取txt文件

import csv
data = []
with open('E:/DataTest.txt', 'rt') as csvfile:
    reader = csv.reader(csvfile, delimiter=',')
    for row in reader:
        data.append(row)
    #输出结果是列表
    print(data)

输出结果:

[['1', '2', '3'], ['4', '5', '6'], ['7', '8', '9']]

第二种方式:使用numpy.loadtxt()读取txt文件

import numpy as np
data= np.loadtxt('E:/DataTest.txt',delimiter=',')
#输出结果是numpy中数组格式
print(data)

输出结果:

[[1. 2. 3.]
[4. 5. 6.]
[7. 8. 9.]]

不过在后面添加如下语句都可以转换成DataFrame格式:

df = pd.DataFrame(data)
df.to_csv()
print(df)

输出结果:

0 1 2
0 1.0 2.0 3.0
1 4.0 5.0 6.0
2 7.0 8.0 9.0

第三种方式:使用pandas.red_csv()读取txt文件

import pandas as pd
data= pd.read_csv('E:/DataTest.txt',names=['0', '1', '2'])
#输出结果是numpy中数组格式
print(data)

输出结果:

0 1 2
0 1 2 3
1 4 5 6
2 7 8 9

以上为个人经验,希望能给大家一个参考,也希望大家多多支持我们。

(0)

相关推荐

  • Python读写txt文本文件的操作方法全解析

    一.文件的打开和创建 >>> f = open('/tmp/test.txt') >>> f.read() 'hello python!\nhello world!\n' >>> f <open file '/tmp/test.txt', mode 'r' at 0x7fb2255efc00> 二.文件的读取 步骤:打开 -- 读取 -- 关闭 >>> f = open('/tmp/test.txt') >>&

  • python逐行读取文件内容的三种方法

    方法一: 复制代码 代码如下: f = open("foo.txt")             # 返回一个文件对象  line = f.readline()             # 调用文件的 readline()方法  while line:      print line,                 # 后面跟 ',' 将忽略换行符      # print(line, end = '') # 在 Python 3中使用      line = f.readline()

  • 利用Python读取txt文档的方法讲解

    在G:/PythonPractise文件夹下新建一个名为record.txt的文本文档,写入如下图所示四行内容并保存. 打开python3的idle,开始写代码. 方法一代码和运行结果如下: 如上面运行结果所示,上面的结果是省略end=的写法,等价于end="\n"(回车); 下面的结果是end=""(空字符串)的写法,等价于end="\r"(换行) 方法二代码和运行结果如下: 方法三代码结果如下: 比较三种方法,方法一先将该路径下的文件返回成一

  • Python 如何读取.txt,.md等文本文件

    看代码吧~ # example.md 1 2 3 4 5 6 7 8 9 >>> with open('example.md') as f: lines = f.readlines() >>> lines ['1 2 3\n', '4 5 6\n', '7 8 9\n'] # 我们发现每一行后面都会有一个回车符,我们使用strip()函数消除它 >>> lines = [i.strip() for i in lines] ['1 2 3', '4 5

  • Python之读取TXT文件的方法小结

    方法一: <span style="font-size:14px;">#read txt method one f = open("./image/abc.txt") line = f.readline() while line: print line line = f.readline() f.close() </span> 方法二: #read txt method two f = open("./image/abc.txt&q

  • Python实现读取txt文件并转换为excel的方法示例

    本文实例讲述了Python实现读取txt文件并转换为excel的方法.分享给大家供大家参考,具体如下: 这里的txt文件内容格式为: 892天平天国定都在?A开封B南京C北京(B) Python代码如下: # coding=utf-8 ''''' main function:主要实现把txt中的每行数据写入到excel中 ''' ################# #第一次执行的代码 import xlwt #写入文件 import xlrd #打开excel文件 import os txtFi

  • Python实现读取txt文件中的数据并绘制出图形操作示例

    本文实例讲述了Python实现读取txt文件中的数据并绘制出图形操作.分享给大家供大家参考,具体如下: 下面的是某一文本文件中的数据. 6.1101,17.592 5.5277,9.1302 8.5186,13.662 7.0032,11.854 5.8598,6.8233 8.3829,11.886 7.4764,4.3483 8.5781,12 6.4862,6.5987 5.0546,3.8166 5.7107,3.2522 14.164,15.505 5.734,3.1551 8.408

  • Python实现读取TXT文件数据并存进内置数据库SQLite3的方法

    本文实例讲述了Python实现读取TXT文件数据并存进内置数据库SQLite3的方法.分享给大家供大家参考,具体如下: 当TXT文件太大,计算机内存不够时,我们可以选择按行读取TXT文件,并将其存储进Python内置轻量级splite数据库,这样可以加快数据的读取速度,当我们需要重复读取数据时,这样的速度加快所带来的时间节省是非常可观的,比如,当我们在训练数据时,要迭代10万次,即要从文件中读取10万次,即使每次只加快0.1秒,那么也能节省几个小时的时间了. #创建数据库并把txt文件的数据存进

  • Python实现读取txt文件并画三维图简单代码示例

    记忆力差的孩子得勤做笔记! 刚接触python,最近又需要画一个三维图,然后就找了一大堆资料,看的人头昏脑胀的,今天终于解决了!好了,废话不多说,直接上代码! #由三个一维坐标画三维散点 #coding:utf-8 import numpy as np import matplotlib.pyplot as plt from mpl_toolkits.mplot3d.axes3d import Axes3D x = [] y = [] z = [] f = open("data\\record.

  • python批量读取txt文件为DataFrame的方法

    我们有时候会批量处理同一个文件夹下的文件,并且希望读取到一个文件里面便于我们计算操作.比方我有下图一系列的txt文件,我该如何把它们写入一个txt文件中并且读取为DataFrame格式呢? 首先我们要用到glob模块,这个python内置的模块可以说是非常的好用. glob.glob('*.txt') 得到如下结果: all.txt是我最后得到的结果文件.可以见返回的是一个包含txt文件名称的列表,当然如果你的文件夹下面只有txt文件,那么你用os.listdir()可以得到一个一样的列表 然后

  • python Pandas 读取txt表格的实例

    运行环境 Python 2.7 操作实例 1.原始文本格式:空格分隔的txt,例如 2016-03-22 00:06:24.4463094 中文测试字符 2016-03-22 00:06:32.4565680 需要编辑encoding 2016-03-22 00:06:32.6835965 abc 2016-03-22 00:06:32.8041945 egb 2.pandas 读取数据 import pandas as pd data = pd.read_table('Z:/test.txt'

  • python 循环读取txt文档 并转换成csv的方法

    如下所示: # -*- coding: utf-8 -*- """ Created on Fri Jul 29 15:49:06 2016 @author: user """ import os #从文件中读取某一行 linecache.checkcache可以刷新cache ,linecache可以缓存某一行的信息 import linecache def GetFileNameAndExt(filename): (filepath,tempf

  • 教你利用python如何读取txt中的数据

    目录 前言 方法一:运用open()函数 方法二:使用numpy包的loadtxt方法 方法三:使用pandas的read_table方法进行读取 总结 前言 当我们在用python时可能会遇到想要把txt文档里的数据读取出来然后进行绘图,那么我们要怎么才能够将txt里的数据读取出来呢? 假设有txt文本如下: 想要把上述文本数据读取出来,可以用以下方法: 方法一:运用open()函数 该方法使用最基本的open函数进行读取,此处将会把数据读取到一个列表中,这个方法一般就是open打开文件.re

随机推荐