python基于Pandas读写MySQL数据库

要实现 pandas 对 mysql 的读写需要三个库

  • pandas
  • sqlalchemy
  • pymysql

可能有的同学会问,单独用 pymysql 或 sqlalchemy 来读写数据库不香么,为什么要同时用三个库?主要是使用场景不同,个人觉得就大数据处理而言,用 pandas 读写数据库更加便捷。

1、read_sql_query 读取 mysql

read_sql_query 或 read_sql 方法传入参数均为 sql 语句,读取数据库后,返回内容是 dateframe 对象。普及一下:dateframe 其实也是一种数据结构,类似 excel 表格一样。

import pandas
from sqlalchemy import create_engine

class mysqlconn:
    def __init__(self):
        mysql_username = 'root'
        mysql_password = '123456'
        # 填写真实数库ip
        mysql_ip = 'x.x.x.x'
        port = 3306
        db = 'work'
        # 初始化数据库连接,使用pymysql库
        self.engine = create_engine('mysql+pymysql://{}:{}@{}:{}/{}'.format(mysql_username, mysql_password, mysql_ip, port,db))

    # 查询mysql数据库
    def query(self,sql):
        df  = pandas.read_sql_query(sql,self.engine)
        # df = pandas.read_sql(sql,self.engine)     这种读取方式也可以

        # 返回dateframe格式
        return df

if __name__ =='__main__':
    # 查询的 sql 语句
    SQL = '''select * from working_time order by id desc '''
    # 调用 mysqlconn 类的 query() 方法
    df_data = mysqlconn().query(sql=SQL)

2、to_sql 写入数据库

使用 to_sql 方法写入数据库之前,先把数据转化成 dateframe 。

import pandas
from sqlalchemy import create_engine

class mysqlconn:
    def __init__(self):
        mysql_username = 'root'
        mysql_password = '123456'
        # 填写真实数库ip
        mysql_ip = 'mysql.mall.svc.test.local'
        port = 3306
        db = 'work'
        # 初始化数据库连接,使用pymysql库
        self.engine = create_engine('mysql+pymysql://{}:{}@{}:{}/{}'.format(mysql_username, mysql_password, mysql_ip, port,db))

    # 查询mysql数据库
    def query(self,sql):
        df  = pandas.read_sql_query(sql,self.engine)
        # df = pandas.read_sql(sql,self.engine)

        # 返回dateframe格式
        return df

    # 写入mysql数据库
    def to_sql(self,table,df):
        # 第一个参数是表名
        # if_exists:有三个值 fail、replace、append
        # 1.fail:如果表存在,啥也不做
        # 2.replace:如果表存在,删了表,再建立一个新表,把数据插入
        # 3.append:如果表存在,把数据插入,如果表不存在创建一个表!!
        # index 是否储存index列
        df.to_sql(table, con=self.engine, if_exists='append', index=False)

if __name__ =='__main__':
    # 创建 dateframe 对象
    df = pandas.DataFrame([{'name':'小米','price':'3999','colour':'白色'},{'name':'华为','price':'4999','colour':'黑色'}])
    # 调用 mysqlconn 类的 to_sql() 方法
    mysqlconn().to_sql('phonetest',df)

插入数据库的数据:

以上就是python基于Pandas读写MySQL数据库的详细内容,更多关于Python读写MySQL数据库的资料请关注我们其它相关文章!

(0)

相关推荐

  • Python数据分析之pandas函数详解

    一.apply和applymap 1. 可直接使用NumPy的函数 示例代码: # Numpy ufunc 函数 df = pd.DataFrame(np.random.randn(5,4) - 1) print(df) print(np.abs(df)) 运行结果: 0         1         2         3 0 -0.062413  0.844813 -1.853721 -1.980717 1 -0.539628 -1.975173 -0.856597 -2.612406

  • python中pandas.read_csv()函数的深入讲解

    这里将更新最新的最全面的read_csv()函数功能以及参数介绍,参考资料来源于官网. pandas库简介 官方网站里详细说明了pandas库的安装以及使用方法,在这里获取最新的pandas库信息,不过官网仅支持英文. pandas是一个Python包,并且它提供快速,灵活和富有表现力的数据结构.这样当我们处理"关系"或"标记"的数据(一维和二维数据结构)时既容易又直观. pandas是我们运用Python进行实际.真实数据分析的基础,同时它是建立在NumPy之上的

  • python pandas合并Sheet,处理列乱序和出现Unnamed列的解决

    使用python中的pandas,xlrd,openpyxl库完成合并excel中指定sheet的操作 # -*- coding: UTF-8 -*- import xlrd import pandas as pd from pandas import DataFrame from openpyxl import load_workbook #表格位置 excel_name = '1.xlsx' # 获取workbook中所有的表格 wb = xlrd.open_workbook(excel_n

  • Python基础之pandas数据合并

    一.concat concat函数是在pandas底下的方法,可以将数据根据不同的轴作简单的融合 pd.concat(objs, axis=0, join='outer', join_axes=None, ignore_index=False, keys=None, levels=None, names=None, verify_integrity=False) axis: 需要合并链接的轴,0是行,1是列join:连接的方式 inner,或者outer 二.相同字段的表首尾相接 #现将表构成l

  • 关于Python 解决Python3.9 pandas.read_excel(‘xxx.xlsx‘)报错的问题

    问题描述 使用pandas库的read_excel()方法读取外部excel文件报错, 截图如下 好像是缺少了什么方法的样子 问题分析 分析个啥, 水平有限, 直接面向stackoverflow编程 https://stackoverflow.com/questions/64264563/attributeerror-elementtree-object-has-no-attribute-getiterator-when-trying 我找到了下面的这几种说法 根据国外大神的指点, 我得出了这些

  • Python3 pandas.concat的用法说明

    前面给大家分享了pandas.merge用法详解,这节分享pandas数据合并处理的姊妹篇,pandas.concat用法详解,参考利用Python进行数据分析与pandas官网进行整理. pandas.merge参数列表如下图,其中只有objs是必须得参数,另外常用参数包括objs.axis.join.keys.ignore_index. 1.pd.concat([df1,df2,df3]), 默认axis=0,在0轴上合并. 2.pd.concat([df1,df4],axis=1)–在1轴

  • python-pandas创建Series数据类型的操作

    1.什么是pandas 2.查看pandas版本信息 print(pd.__version__) 输出: 0.24.1 3.常见数据类型 常见的数据类型: - 一维: Series - 二维: DataFrame - 三维: Panel - - 四维: Panel4D - - N维: PanelND - 4.pandas创建Series数据类型对象 1). 通过列表创建Series对象 array = ["粉条", "粉丝", "粉带"] # 如

  • python之 matplotlib和pandas绘图教程

    不得不说使用python库matplotlib绘图确实比较丑,但使用起来还算是比较方便,做自己的小小研究可以使用.这里记录一些统计作图方法,包括pandas作图和plt作图. 前提是先导入第三方库吧 import pandas as pd import matplotlib.pyplot as plt import numpy as np 然后以下这两句用于正常显示中文标签什么的. plt.rcParams['font.sans-serif'] = ['SimHei'] # 用来正常显示中文标签

  • python 使用pandas同时对多列进行赋值

    如dataframe data1['月份']=int(month) #加入月份和企业名称 data1['企业']=parmentname 可以增加单列,并赋值,如果想同时对多列进行赋值 data1['月份','企业']=int(month) , parmentname #加入月份和企业名称 会出错 ValueError: Length of values does not match length of index data[['合计','平均']]='数据','月份' 类似这样的,也无效 Ke

  • python基于Pandas读写MySQL数据库

    要实现 pandas 对 mysql 的读写需要三个库 pandas sqlalchemy pymysql 可能有的同学会问,单独用 pymysql 或 sqlalchemy 来读写数据库不香么,为什么要同时用三个库?主要是使用场景不同,个人觉得就大数据处理而言,用 pandas 读写数据库更加便捷. 1.read_sql_query 读取 mysql read_sql_query 或 read_sql 方法传入参数均为 sql 语句,读取数据库后,返回内容是 dateframe 对象.普及一下

  • python 基于PYMYSQL使用MYSQL数据库

    在做测试的时候都会用到数据库,今天写一篇通过python连接MYSQL数据库 什么是MYSQL数据库 MySQL是一个关系型数据库管理系统,由瑞典MySQL AB 公司开发,目前属于 Oracle 旗下产品.MySQL 是最流行的关系型数据库管理系统之一,在 WEB 应用方面,MySQL是最好的 RDBMS (Relational Database Management System,关系数据库管理系统) 应用软件之一. 什么是PYMYSQL PyMySQL 是在 Python3.x 版本中用于

  • Python基于DB-API操作MySQL数据库过程解析

    Python提供了一个标准数据库API,称为DB-API,用于处理基于SQL的数据库. 与任何底层数据库的交互都可以使用DB-API,因为DB-API在代码与驱动程序之间提供了一个抽象层,可以根据需要替换底层数据库,而无需丢弃现有的代码. DB-API与底层数据库交互示例: ①代码 ⇆ ②使用DB-API ⇆ ③数据库驱动程序 ⇆ ④底层数据库(如MySQL等) 使用DB-API操作MySQL数据库例子 1.Windows安装MySQL数据库驱动程序MySQL-Connector/Python

  • Python使用pymysql从MySQL数据库中读出数据的方法

    python3.x已经不支持mysqldb了,支持的是pymysql 使用pandas读取MySQL数据时,使用sqlalchemy,出现No module named 'MySQLdb'错误. 安装:打开Windows PowerShell,输入pip3 install PyMySQL即可 import pymysql.cursors import pymysql import pandas as pd #连接配置信息 config = { 'host':'127.0.0.1', 'port'

  • Java基于jdbc连接mysql数据库操作示例

    本文实例讲述了Java基于jdbc连接mysql数据库操作.分享给大家供大家参考,具体如下: import java.sql.Connection; import java.sql.DriverManager; import java.sql.ResultSet; import java.sql.SQLException; import java.sql.Statement; public class MySQLDemo { private Connection conn = null; pri

  • java基于jdbc连接mysql数据库功能实例详解

    本文实例讲述了java基于jdbc连接mysql数据库的方法.分享给大家供大家参考,具体如下: 一.JDBC简介 Java 数据库连接,(Java Database Connectivity,简称JDBC)是Java语言中用来规范客户端程序如何来访问数据库的应用程序接口,提供了诸如查询和更新数据库中数据的方法.JDBC也是Sun Microsystems的商标.它JDBC是面向关系型数据库的. 1.JDBC架构: JDBC API支持两层和三层处理模型进行数据库访问,但在一般的JDBC体系结构由

  • python使用MySQLdb访问mysql数据库的方法

    本文实例讲述了python使用MySQLdb访问mysql数据库的方法.分享给大家供大家参考.具体如下: #!/usr/bin/python import MySQLdb def doInsert(cursor,db): #insert # Prepare SQL query to INSERT a record into the database. sql = "UPDATE EMPLOYEE SET AGE = AGE+1 WHERE SEX = '%c'" %('M') try:

  • 基于Docker的PHP调用基于Docker的Mysql数据库

    docker简介: Docker 是一个开源的应用容器引擎,让开发者可以打包他们的应用以及依赖包到一个可移植的容器中,然后发布到任何流行的 Linux 机器上,也可以实现虚拟化.容器是完全使用沙箱机制,相互之间不会有任何接口. 自从接触docker以来,一直想实现这种玩法.如下是步骤 1:建立基于docker的mysql,参考文章 Mac上将brew安装的MySql改用Docker执行 2:建立基于docker的php image 在当前目录,建立Dockerfile,内容如下 FROM php

  • Java实现基于JDBC操作mysql数据库的方法

    本文实例讲述了Java实现基于JDBC操作mysql数据库的方法.分享给大家供大家参考,具体如下: package main; import java.sql.Connection; import java.sql.DriverManager; import java.sql.ResultSet; import java.sql.Statement; import java.util.ArrayList; import java.util.List; public class DBConnect

  • Python实现定时备份mysql数据库并把备份数据库邮件发送

    一.先来看备份mysql数据库的命令 mysqldump -u root --password=root --database abcDataBase > c:/abc_backup.sql 二.写Python程序 BackupsDB.py #!/usr/bin/python # -*- coding: UTF-8 -*- ''''' zhouzhongqing 备份数据库 ''' import os import time import sched import smtplib from em

随机推荐